Publications

Results 76–100 of 101
Skip to search filters

pCAMAL: An embarrassingly parallel hexahedral mesh generator

Proceedings of the 16th International Meshing Roundtable, IMR 2007

Pébay, Philippe P.; Stephenson, Michael B.; Fortier, Leslie A.; Owen, Steven J.; Melander, Darryl J.

This paper describes a distributed-memory, embarrassingly parallel hexahedral mesh generator, pCAMAL (parallel CUBIT Adaptive Mesh Algorithm Library). pCAMAL utilizes the sweeping method following a serial step of geometry decomposition conducted in the CUBIT geometry preparation and mesh generation tool. The utility of pCAMAL in generating large meshes is illustrated, and linear speed-up under load-balanced conditions is demonstrated.

More Details

Meshing complexity: Predicting meshing difficulty for single part CAD models

Engineering with Computers

White, David R.; Saigal, Sunil; Owen, Steven J.

This paper proposes a method for predicting the complexity of meshing computer aided design (CAD) geometries with unstructured, hexahedral, finite elements. Meshing complexity refers to the relative level of effort required to generate a valid finite element mesh on a given CAD geometry. A function is proposed to approximate the meshing complexity for single part CAD models. The function is dependent on a user defined element size as well as on data extracted from the geometry and topology of the CAD part. Several geometry and topology measures are proposed, which both characterize the shape of the CAD part and detect configurations that complicate mesh generation. Based on a test suite of CAD models, the function is demonstrated to be accurate within a certain range of error. The solution proposed here is intended to provide managers and users of meshing software a method of predicting the difficulty in meshing a CAD model. This will enable them to make decisions about model simplification and analysis approaches prior to mesh generation. © Springer-Verlag London Limited 2005.

More Details

Unconstrained paving & plastering: A new idea for all hexahedral mesh generation

Proceedings of the 14th International Meshing Roundtable, IMR 2005

Staten, Matthew L.; Owen, Steven J.; Blacker, Ted D.

Unconstrained Plastering is a new algorithm with the goal of generating a conformal all-hexahedral mesh on any solid geometry assembly. Paving[1] has proven reliable for quadrilateral meshing on arbitrary surfaces. However, the 3D corollary, Plastering [2][3][4][5], is unable to resolve the unmeshed center voids due to being over-constrained by a pre-existing boundary mesh. Unconstrained Plastering attempts to leverage the benefits of Paving and Plastering, without the over-constrained nature of Plastering. Unconstrained Plastering uses advancing fronts to inwardly project unconstrained hexahedral layers from an unmeshed boundary. Only when three layers cross, is a hex element formed. Resolving the final voids is easier since closely spaced, randomly oriented quadrilaterals do not over-constrain the problem. Implementation has begun on Unconstrained Plastering, however, proof of its reliability is still forthcoming. © 2005 Springer-Verlag Berlin Heidelberg.

More Details

Conformal refinement of all-hexahedral element meshes based on multiple twist plane insertion

Owen, Steven J.

This paper presents an automated tool for local, conformal refinement of all-hexahedral meshes based on the insertion of multi-directional twist planes into the spatial twist continuum. The refinement process is divided into independent refinement steps. In each step, an inserted twist plane modifies a single sheet or two parallel hex sheets. Six basic templates, chosen and oriented based on the number of nodes selected for refinement, replace original mesh elements. The contributions of this work are (1) the localized refinement of mesh regions defined by individual or groups of nodes, element edges, element faces or whole elements within an all-hexahedral mesh, (2) the simplification of template-based refinement into a general method and (3) the use of hex sheets for the management of template insertion in multi-directional refinement.

More Details

Formation of pyramid elements for hexahedra to tetrahedra transitions

Computer Methods in Applied Mechanics and Engineering

Owen, Steven J.; Saigal, Sunil

New algorithms are proposed for the modification of a mixed hexahedra-tetrahedra element mesh to maintain compatibility by the insertion of pyramid elements. Several methods for generation of the pyramids are presented involving local tetrahedral transformations and/or node insertion near the hex/tet interface. Local smoothing and topological operations improve the quality of the transition region. Results show superior performance of the resulting elements in a commercial finite-element code over non-conforming interface conditions. © 2001 Elsevier Science B.V. All rights reserved.

More Details

Finite element based electrostatic-structural coupled analysis with automated mesh morphing

2000 International Conference on Modeling and Simulation of Microsystems - MSM 2000

Zhulin, V.I.; Owen, Steven J.; Ostergaard, D.F.

A co-simulation tool based on finite element principles has been developed to solve coupled electrostatic-structural problems. An automated mesh morphing algorithm has been employed to update the field mesh after structural deformation. The co-simulation tool has been successfully applied to the hysteric behavior of a MEMS switch.

More Details

H-Morph: An indirect approach to advancing front hex meshing

International Journal for Numerical Methods in Engineering

Owen, Steven J.; Saigal, Sunil

H-Morph is a new automatic algorithm for the generation of a hexahedral-dominant finite element mesh for arbitrary volumes. The H-Morph method starts with an initial tetrahedral mesh and systematically transforms and combines tetrahedra into hexahedra. It uses an advancing front technique where the initial front consists of a set of prescribed quadrilateral surface facets. Fronts arc individually processed by recovering each of the six quadrilateral faces of a hexahedron from the tetrahedral mesh. Recovery techniques similar to those used in boundary constrained Delaunay mesh generation are used. Tetrahedra internal to the six hexahedral faces are then removed and a hexahedron is formed. At any time during the H-Morph procedure a valid mixed hexahedral-tetrahedral mesh is in existence within the volume. The procedure continues until no tetrahedra remain within the volume, or tetrahedra remain which cannot be transformed or combined into valid hexahedral elements. Any remaining tetrahedra are typically towards the interior of the volume, generally a less critical region for analysis. Transition from tetrahedra to hexahedra in the final mesh is accomplished through pyramid-shaped elements. Advantages of the proposed method include its ability to conform to an existing quadrilateral surface mesh, its ability to mesh without the need to decompose or recognize special classes of geometry, and its characteristic well-aligned layers of elements parallel to the boundary. Example test cases are presented on a variety of models. Copyright © 2000 John Wiley & Sons, Ltd.

More Details
Results 76–100 of 101
Results 76–100 of 101