This paper describes a distributed-memory, embarrassingly parallel hexahedral mesh generator, pCAMAL (parallel CUBIT Adaptive Mesh Algorithm Library). pCAMAL utilizes the sweeping method following a serial step of geometry decomposition conducted in the CUBIT geometry preparation and mesh generation tool. The utility of pCAMAL in generating large meshes is illustrated, and linear speed-up under load-balanced conditions is demonstrated.
This paper presents an automated tool for local, conformal refinement of all-hexahedral meshes based on the insertion of multi-directional twist planes into the spatial twist continuum. The refinement process is divided into independent refinement steps. In each step, an inserted twist plane modifies a single sheet or two parallel hex sheets. Six basic templates, chosen and oriented based on the number of nodes selected for refinement, replace original mesh elements. The contributions of this work are (1) the localized refinement of mesh regions defined by individual or groups of nodes, element edges, element faces or whole elements within an all-hexahedral mesh, (2) the simplification of template-based refinement into a general method and (3) the use of hex sheets for the management of template insertion in multi-directional refinement.
Proposed for presentation at the US National Congress on Computation Mechanics / Inter. Jour. of Num. Math. in Eng. held July 28-30, 2003 in Albuquerque, NM.
A co-simulation tool based on finite element principles has been developed to solve coupled electrostatic-structural problems. An automated mesh morphing algorithm has been employed to update the field mesh after structural deformation. The co-simulation tool has been successfully applied to the hysteric behavior of a MEMS switch.