Publications

Results 26–32 of 32
Skip to search filters

Nanoporous carbon for electrochemical capacitors

Yelton, William G.; Siegal, Michael P.; Bunker, B.C.; Limmer, Steven J.

Nanoporous carbon (NPC) is a purely graphitic material with highly controlled densities ranging from less than 0.1 to 2.0 g/cm3, grown via pulsed-laser deposition. Decreasing the density of NPC increases the interplanar spacing between graphene-sheet fragments. This ability to tune the interplanar spacing makes NPC an ideal model system to study the behavior of carbon electrodes in electrochemical capacitors and batteries. We examine the capacitance of NPC films in alkaline and acidic electrolytes, and measure specific capacitances as high as 242 F/g.

More Details

Size effects in Ni/Ni(OH)2 nanomaterials for electrochemical capacitors

Limmer, Steven J.; Yelton, William G.; Bunker, B.C.

Electrochemical capacitors based on redox-active metal oxides show great promise for many energy-storage applications. These materials store charge through both electric double-layer charging and faradaic reactions in the oxide. The dimensions of the oxide nanomaterials have a strong influence on the performance of such capacitors. Not just due to surface area effects, which influence the double-layer capacitance, but also through bulk electrical and ionic conductivities. Ni(OH)2 is a prime candidate for such applications, due to low cost and high theoretical capacity. We have examined the relationship between diameter and capacity for Ni/Ni(OH)2 nanorods. Specific capacitances of up to 511 F/g of Ni were recorded in 47 nm diameter Ni(OH)2 nanorods.

More Details

Nanoporous carbon for electrochemical capacitors

Limmer, Steven J.; Yelton, William G.; Siegal, Michael P.; Overmyer, Donald L.; Bunker, B.C.

Nanoporous carbon (NPC) is a purely graphitic material with highly controlled densities ranging from less than 0.1 to 2.0 g/cm3, grown via pulsed-laser deposition. Decreasing the density of NPC increases the interplanar spacing between graphene-sheet fragments. This ability to tune the interplanar spacing makes NPC an ideal model system to study the behavior of carbon electrodes in electrochemical capacitors and batteries. We examine the capacitance of NPC films in alkaline and acidic electrolytes, and measure specific capacitances as high as 242 F/g.

More Details
Results 26–32 of 32
Results 26–32 of 32