Today's Electrical Grid is Evolving to Accommodate Different Energy Sources and increase Reliability
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings - 2012 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems, CYBER 2012
In ac power systems, including micro-grids, it is important to regulate the amplitude and frequency of the voltages throughout the system. Many of the existing and proposed control strategies for micro-grids are patterned after the classic ac power system. That is, frequency regulation is achieved by designing micro-sources (commonly called Distributed Energy Resources or DERs) to exhibit an output-frequency-versus-power characteristic similar to the speed-versus-power (droop) characteristics of conventional turbo- and hydro-generators. Moreover, voltage regulation strategies are patterned after the output-voltageversus-reactive-power (droop) characteristics of the automatic voltage regulators (AVRs) used in conventional turbo- and hydrogenerators. In this paper, established approaches of frequency and voltage regulation are reviewed. Alternative strategies that utilize modern communication and control technologies are presented and discussed. © 2012 IEEE.
Digest of Technical Papers-IEEE International Pulsed Power Conference
The success of dynamic materials properties research at Sandia National Laboratories has led to research into ultra-low impedance, compact pulsed power systems capable of multi-MA shaped current pulses with rise times ranging from 220-500 ns. The Genesis design consists of two hundred and forty 200 kV, 80 kA modules connected in parallel to a solid dielectric disk transmission line and is capable of producing 280 kbar of magnetic pressure (>500 kbar pressure in high Z materials) in a 1.75 nH, 20 mm wide stripline load. Stripline loads operating under these conditions expand during the experiment resulting in a time-varying load that can impact the performance and lifetime of the system. This paper provides analysis of time-varying stripline loads and the impact of these loads on system performance. Further, an approach to reduce dielectric stress levels through active damping is presented as a means to increase system reliability and lifetime. © 2011 IEEE.
Digest of Technical Papers-IEEE International Pulsed Power Conference
Genesis is a compact pulsed power platform designed by Sandia National Laboratories to generate precision shaped multi-MA current waves with a rise time of 200-500 ns. In this system, two hundred and forty, 200 kV, 80 kA modules are selectively triggered to produce 280 kbar of magnetic pressure (>500 kbar pressure in high Z materials) in a stripline load for dynamic materials properties research. This new capability incorporates the use of solid dielectrics to reduce system inductance and size, programmable current shaping, and gas switches that must perform over a large range of operating conditions. Research has continued on this technology base with a focus on demonstrating the integrated performance of key concepts into a Genesis-like prototype called Protogen. Protogen measures approximately 1.4 m by 1.4 m and is designed to hold twelve Genesis modules. A fixed inductance load will allow rep-rate operation for component reliability and system lifetime experiments at the extreme electric field operating conditions expected in Genesis. © 2011 IEEE.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Fast electrical energy storage or Voltage-Driven Technology (VDT) has dominated fast, high-voltage pulsed power systems for the past six decades. Fast magnetic energy storage or Current-Driven Technology (CDT) is characterized by 10,000 X higher energy density than VDT and has a great number of other substantial advantages, but it has all but been neglected for all of these decades. The uniform explanation for neglect of CDT technology is invariably that the industry has never been able to make an effective opening switch, which is essential for the use of CDT. Most approaches to opening switches have involved plasma of one sort or another. On a large scale, gaseous plasmas have been used as a conductor to bridge the switch electrodes that provides an opening function when the current wave front propagates through to the output end of the plasma and fully magnetizes the plasma - this is called a Plasma Opening Switch (POS). Opening can be triggered in a POS using a magnetic field to push the plasma out of the A-K gap - this is called a Magnetically Controlled Plasma Opening Switch (MCPOS). On a small scale, depletion of electron plasmas in semiconductor devices is used to affect opening switch behavior, but these devices are relatively low voltage and low current compared to the hundreds of kilo-volts and tens of kilo-amperes of interest to pulsed power. This work is an investigation into an entirely new approach to opening switch technology that utilizes new materials in new ways. The new materials are Ferroelectrics and using them as an opening switch is a stark contrast to their traditional applications in optics and transducer applications. Emphasis is on use of high performance ferroelectrics with the objective of developing an opening switch that would be suitable for large scale pulsed power applications. Over the course of exploring this new ground, we have discovered new behaviors and properties of these materials that were here to fore unknown. Some of these unexpected discoveries have lead to new research directions to address challenges.
Abstract not provided.
Abstract not provided.
Proposed for publication in the Physical Review, Special Topics, Accelerators and Beams.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Plasma Science
Abstract not provided.
IEEE Transactions on Plasma Science
Abstract not provided.