Publications

Results 101–125 of 135
Skip to search filters

The impact of attitude resolve on population wide attitude change

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Vineyard, Craig M.; Lakkaraju, Kiran L.; Collard, Joseph; Verzi, Stephen J.

Attitudes play a critical role in informing resulting behavior. Extending previous work, we have developed a model of population wide attitude change that captures social factors through a social network, cognitive factors through a cognitive network and individual differences in influence. All three of these factors are supported by literature as playing a role in attitude and behavior change. In this paper we present a new computational model of attitude resolve which incorporates the affects of player interaction dynamics that uses game theory in an integrated model of socio-cognitive strategy-based individual interaction and provide preliminary experiments. © 2012 Springer-Verlag.

More Details

Augmented cognition tool for rapid military decision making

Vineyard, Craig M.; Verzi, Stephen J.; Taylor, Shawn E.; Dubicka, Irene D.; Bernard, Michael L.

This report describes the laboratory directed research and development work to model relevant areas of the brain that associate multi-modal information for long-term storage for the purpose of creating a more effective, and more automated, association mechanism to support rapid decision making. Using the biology and functionality of the hippocampus as an analogy or inspiration, we have developed an artificial neural network architecture to associate k-tuples (paired associates) of multimodal input records. The architecture is composed of coupled unimodal self-organizing neural modules that learn generalizations of unimodal components of the input record. Cross modal associations, stored as a higher-order tensor, are learned incrementally as these generalizations form. Graph algorithms are then applied to the tensor to extract multi-modal association networks formed during learning. Doing so yields a novel approach to data mining for knowledge discovery. This report describes the neurobiological inspiration, architecture, and operational characteristics of our model, and also provides a real world terrorist network example to illustrate the model's functionality.

More Details

Modeling cortical circuits

Rothganger, Fredrick R.; Rohrer, Brandon R.; Verzi, Stephen J.; Xavier, Patrick G.

The neocortex is perhaps the highest region of the human brain, where audio and visual perception takes place along with many important cognitive functions. An important research goal is to describe the mechanisms implemented by the neocortex. There is an apparent regularity in the structure of the neocortex [Brodmann 1909, Mountcastle 1957] which may help simplify this task. The work reported here addresses the problem of how to describe the putative repeated units ('cortical circuits') in a manner that is easily understood and manipulated, with the long-term goal of developing a mathematical and algorithmic description of their function. The approach is to reduce each algorithm to an enhanced perceptron-like structure and describe its computation using difference equations. We organize this algorithmic processing into larger structures based on physiological observations, and implement key modeling concepts in software which runs on parallel computing hardware.

More Details
Results 101–125 of 135
Results 101–125 of 135