Publications

Results 51–75 of 135
Skip to search filters

Neural-Inspired Anomaly Detection

Springer Proceedings in Complexity

Verzi, Stephen J.; Vineyard, Craig M.; Aimone, James B.

Anomaly detection is an important problem in various fields of complex systems research including image processing, data analysis, physical security and cybersecurity. In image processing, it is used for removing noise while preserving image quality, and in data analysis, physical security and cybersecurity, it is used to find interesting data points, objects or events in a vast sea of information. Anomaly detection will continue to be an important problem in domains intersecting with “Big Data”. In this paper we provide a novel algorithm for anomaly detection that uses phase-coded spiking neurons as basic computational elements.

More Details

A spike-Timing neuromorphic architecture

2017 IEEE International Conference on Rebooting Computing, ICRC 2017 - Proceedings

Hill, Aaron J.; Donaldson, Jonathon W.; Rothganger, Fredrick R.; Vineyard, Craig M.; Follett, David R.; Follett, Pamela L.; Smith, Michael R.; Verzi, Stephen J.; Severa, William M.; Wang, Felix W.; Aimone, James B.; Naegle, John H.; James, Conrad D.

Unlike general purpose computer architectures that are comprised of complex processor cores and sequential computation, the brain is innately parallel and contains highly complex connections between computational units (neurons). Key to the architecture of the brain is a functionality enabled by the combined effect of spiking communication and sparse connectivity with unique variable efficacies and temporal latencies. Utilizing these neuroscience principles, we have developed the Spiking Temporal Processing Unit (STPU) architecture which is well-suited for areas such as pattern recognition and natural language processing. In this paper, we formally describe the STPU, implement the STPU on a field programmable gate array, and show measured performance data.

More Details

A Case Study on Neural Inspired Dynamic Memory Management Strategies for High Performance Computing

Vineyard, Craig M.; Verzi, Stephen J.

As high performance computing architectures pursue more computational power there is a need for increased memory capacity and bandwidth as well. A multi-level memory (MLM) architecture addresses this need by combining multiple memory types with different characteristics as varying levels of the same architecture. How to efficiently utilize this memory infrastructure is an unknown challenge, and in this research we sought to investigate whether neural inspired approaches can meaningfully help with memory management. In particular we explored neurogenesis inspired re- source allocation, and were able to show a neural inspired mixed controller policy can beneficially impact how MLM architectures utilize memory.

More Details

Optimization-based computation with spiking neurons

Proceedings of the International Joint Conference on Neural Networks

Verzi, Stephen J.; Vineyard, Craig M.; Vugrin, Eric D.; Galiardi, Meghan; James, Conrad D.; Aimone, James B.

Considerable effort is currently being spent designing neuromorphic hardware for addressing challenging problems in a variety of pattern-matching applications. These neuromorphic systems offer low power architectures with intrinsically parallel and simple spiking neuron processing elements. Unfortunately, these new hardware architectures have been largely developed without a clear justification for using spiking neurons to compute quantities for problems of interest. Specifically, the use of spiking for encoding information in time has not been explored theoretically with complexity analysis to examine the operating conditions under which neuromorphic computing provides a computational advantage (time, space, power, etc.) In this paper, we present and formally analyze the use of temporal coding in a neural-inspired algorithm for optimization-based computation in neural spiking architectures.

More Details

Recommended Research Directions for Improving the Validation of Complex Systems Models

Vugrin, Eric D.; Trucano, Timothy G.; Swiler, Laura P.; Finley, Patrick D.; Flanagan, Tatiana P.; Naugle, Asmeret B.; Tsao, Jeffrey Y.; Verzi, Stephen J.

More Details

Quantifying neural information content: A case study of the impact of hippocampal adult neurogenesis

Proceedings of the International Joint Conference on Neural Networks

Vineyard, Craig M.; Verzi, Stephen J.; James, Conrad D.; Aimone, James B.

Through various means of structural and synaptic plasticity enabling online learning, neural networks are constantly reconfiguring their computational functionality. Neural information content is embodied within the configurations, representations, and computations of neural networks. To explore neural information content, we have developed metrics and computational paradigms to quantify neural information content. We have observed that conventional compression methods may help overcome some of the limiting factors of standard information theoretic techniques employed in neuroscience, and allows us to approximate information in neural data. To do so we have used compressibility as a measure of complexity in order to estimate entropy to quantitatively assess information content of neural ensembles. Using Lempel-Ziv compression we are able to assess the rate of generation of new patterns across a neural ensemble's firing activity over time to approximate the information content encoded by a neural circuit. As a specific case study, we have been investigating the effect of neural mixed coding schemes due to hippocampal adult neurogenesis.

More Details

Improving Grid Resilience through Informed Decision-making (IGRID)

Burnham, Laurie B.; Stamber, Kevin L.; Jeffers, Robert F.; Adams, Susan S.; Verzi, Stephen J.; Sahakian, Meghan A.; Haass, Michael J.; Cauthen, Katherine R.

The transformation of the distribution grid from a centralized to decentralized architecture, with bi-directional power and data flows, is made possible by a surge in network intelligence and grid automation. While changes are largely beneficial, the interface between grid operator and automated technologies is not well understood, nor are the benefits and risks of automation. Quantifying and understanding the latter is an important facet of grid resilience that needs to be fully investigated. The work described in this document represents the first empirical study aimed at identifying and mitigating the vulnerabilities posed by automation for a grid that for the foreseeable future will remain a human-in-the-loop critical infrastructure. Our scenario-based methodology enabled us to conduct a series of experimental studies to identify causal relationships between grid-operator performance and automated technologies and to collect measurements of human performance as a function of automation. Our findings, though preliminary, suggest there are predictive patterns in the interplay between human operators and automation, patterns that can inform the rollout of distribution automation and the hiring and training of operators, and contribute in multiple and significant ways to the field of grid resilience.

More Details

Complex Systems Models and Their Applications: Towards a New Science of Verification, Validation & Uncertainty Quantification

Tsao, Jeffrey Y.; Trucano, Timothy G.; Kleban, S.D.; Naugle, Asmeret B.; Verzi, Stephen J.; Swiler, Laura P.; Johnson, Curtis M.; Smith, Mark A.; Flanagan, Tatiana P.; Vugrin, Eric D.; Gabert, Kasimir G.; Lave, Matthew S.; Chen, Wei C.; DeLaurentis, Daniel D.; Hubler, Alfred H.; Oberkampf, Bill O.

This report contains the written footprint of a Sandia-hosted workshop held in Albuquerque, New Mexico, June 22-23, 2016 on “Complex Systems Models and Their Applications: Towards a New Science of Verification, Validation and Uncertainty Quantification,” as well as of pre-work that fed into the workshop. The workshop’s intent was to explore and begin articulating research opportunities at the intersection between two important Sandia communities: the complex systems (CS) modeling community, and the verification, validation and uncertainty quantification (VVUQ) community The overarching research opportunity (and challenge) that we ultimately hope to address is: how can we quantify the credibility of knowledge gained from complex systems models, knowledge that is often incomplete and interim, but will nonetheless be used, sometimes in real-time, by decision makers?

More Details
Results 51–75 of 135
Results 51–75 of 135