Publications

Results 26–41 of 41
Skip to search filters

Giant Magneto-Resistance in Epitaxial (La0.7Sr0.3MnO3)0.5: (ZnO)0.5 Nanocomposites

Pan, Wei P.; Jiang, Y.X.; Ihlefeld, Jon I.; Lu, Ping L.; Lee, Stephen R.

A great deal of research has been carried out in oxide material systems. Among them, ZnO and La0.7Sr0.3MnO3 (LSMO) are of particular interest due to their superb optical properties and colossal magneto-resistive effect. Here, we report our recent results of magneto-transport studies in self-assembled, epitaxial (ZnO)0.5:(La0.7Sr0.3MnO3)0.5 nanocomposite films.

More Details

Defect-reduction mechanism for improving radiative efficiency in InGaN/GaN light-emitting diodes using InGaN underlayers

Journal of Applied Physics

Armstrong, Andrew A.; Bryant, Benjamin N.; Crawford, Mary H.; Koleske, Daniel K.; Lee, Stephen R.; Wierer, Jonathan W.

The influence of a dilute InxGa1-xN (x ∼ 0.03) underlayer (UL) grown below a single In0.16Ga0.84N quantum well (SQW), within a light-emitting diode (LED), on the radiative efficiency and deep level defect properties was studied using differential carrier lifetime (DCL) measurements and deep level optical spectroscopy (DLOS). DCL measurements found that inclusion of the UL significantly improved LED radiative efficiency. At low current densities, the non-radiative recombination rate of the LED with an UL was found to be 3.9 times lower than the LED without an UL, while the radiative recombination rates were nearly identical. This suggests that the improved radiative efficiency resulted from reduced non-radiative defect concentration within the SQW. DLOS measurement found the same type of defects in the InGaN SQWs with and without ULs. However, lighted capacitance-voltage measurements of the LEDs revealed a 3.4 times reduction in a SQW-related near-mid-gap defect state for the LED with an UL. Quantitative agreement in the reduction of both the non-radiative recombination rate (3.9×) and deep level density (3.4×) upon insertion of an UL corroborates deep level defect reduction as the mechanism for improved LED efficiency.

More Details

Density Functional Theory Calculations of Activation Energies for Non-radiative Carrier Capture by Deep Defect Levels in Semiconductors

Sandia journal manuscript; Not yet accepted for publication

Modine, N.A.; Wright, Alan F.; Lee, Stephen R.

Carrier recombination due to defects can have a major impact on device performance. The rate of defect-induced carrier recombination is determined by both defect levels and carrier capture cross-sections. Kohn-Sham density functional theory (DFT) has been widely and successfully used to predict defect levels in semiconductors and insulators, but only recently has work begun to focus on using DFT to determine carrier capture cross-sections. Lang and Henry worked out the fundamental theory of carrier-capture cross-sections in the 1970s and showed that, in most cases, room temperature carrier-capture cross-sections differ between defects primarily due to differences in the carrier capture activation energies. Here, we present an approach to using DFT to calculate carrier capture activation energies that does not depend on perturbation theory or an assumed configuration coordinate, and we demonstrate this approach for the -3/-2 level of the Ga vacancy in wurtzite GaN.

More Details
Results 26–41 of 41
Results 26–41 of 41