Publications

Results 51–75 of 180
Skip to search filters

Misoriented grain boundaries vicinal to the twin in Nickel part II: Thermodynamics of hydrogen segregation

Philosophical Magazine

O'Brien, Christopher J.; Foiles, Stephen M.

Grain boundary engineered materials are of immense interest for their resistance to hydrogen embrittlement. This work builds on the work undertaken in Part I on the thermodynamic stability and structure of misoriented grain boundaries vicinal to the (coherent-twin) boundary to examine hydrogen segregation to those boundaries. The segregation of hydrogen reflects the asymmetry of the boundary structure with the sense of rotation of the grains about the coherent-twin boundary, and the temperature-dependent structural transition present in one sense of misorientation. This work also finds that the presence of hydrogen affects a change in structure of the boundaries with increasing concentration. The structural change effects only one sense of misorientation and results in the reduction in length of the emitted stacking faults. Moreover, the structural change results in the generation of occupied sites populated by more strongly bound hydrogen. The improved understanding of misoriented twin grain boundary structure and the effect on hydrogen segregation resulting from this work is relevant to higher length-scale models. To that end, we examine commonly used metrics such as free volume and atomic stress at the boundary. Free volume is found not to be useful as a surrogate for predicting the degree of hydrogen segregation, whereas the volumetric virial stress reliably predicts the locations of hydrogen segregation and exclusion at concentrations below saturation or the point where structural changes are induced by increasing hydrogen concentration. This manuscript has been authored by Sandia Corporation under Contract No. DE-AC04-94AL85000 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

More Details

Misoriented grain boundaries vicinal to the twin in nickel Part I: Thermodynamics & temperature-dependent structure

Philosophical Magazine

O'Brien, Christopher J.; Medlin, Douglas L.; Foiles, Stephen M.

Grain boundary-engineered materials are of immense interest for their corrosion resistance, fracture resistance and microstructural stability. This work contributes to a larger goal of understanding both the structure and thermodynamic properties of grain boundaries vicinal (within) to the (coherent twin) boundary which is found in grain boundary-engineered materials. The misoriented boundaries vicinal to the twin show structural changes at elevated temperatures. In the case of nickel, this transition temperature is substantially below the melting point and at temperatures commonly reached during processing, making the existence of such boundaries very likely in applications. Thus, the thermodynamic stability of such features is thoroughly investigated in order to predict and fully understand the structure of boundaries vicinal to twins. Low misorientation angle grain boundaries () show distinct disconnections which accommodate misorientation in opposite senses. The two types of disconnection have differing lowerature structures which show different temperature-dependent behaviours with one type undergoing a structural transition at approximately 600 K. At misorientation angles greater than approximately, the discrete disconnection nature is lost as the disconnections merge into one another. Free energy calculations demonstrate that these high-angle boundaries, which exhibit a transition from a planar to a faceted structure, are thermodynamically more stable in the faceted configuration.

More Details

Determination of recombination radius in Si for binary collision approximation codes

Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms

Vizkelethy, Gyorgy V.; Foiles, Stephen M.

Displacement damage caused by ions or neutrons in microelectronic devices can have significant effect on the performance of these devices. Therefore, it is important to predict not only the displacement damage profile, but also its magnitude precisely. Analytical methods and binary collision approximation codes working with amorphous targets use the concept of displacement energy, the energy that a lattice atom has to receive to create a permanent replacement. It was found that this "displacement energy" is direction dependent; it can range from 12 to 32 eV in silicon. Obviously, this model fails in BCA codes that work with crystalline targets, such as Marlowe. Marlowe does not use displacement energy; instead, it uses lattice binding energy only and then pairs the interstitial atoms with vacancies. Then based on the configuration of the Frenkel pairs it classifies them as close, near, or distant pairs, and considers the distant pairs the permanent replacements. Unfortunately, this separation is an ad hoc assumption, and the results do not agree with molecular dynamics calculations. After irradiation, there is a prompt recombination of interstitials and vacancies if they are nearby, within a recombination radius. In order to implement this recombination radius in Marlowe, we used the comparison of MD and Marlowe calculation in a range of ion energies in single crystal silicon target. The calculations showed that a single recombination radius of ∼7.4 Å in Marlowe for a range of ion energies gives an excellent agreement with MD.

More Details

Helium trapping at erbium oxide precipitates in erbium hydride

Foiles, Stephen M.; Battaile, Corbett C.

The formation of He bubbles in erbium tritides is a significant process in the aging of these materials. Due to the long-standing uncertainty about the initial nucleation process of these bubbles, there is interest in mechanisms that can lead to the localization of He in erbium hydrides. Previous work has been unable to identify nucleation sites in homogeneous erbium hydride. This work builds on the experimental observation that erbium hydrides have nano- scale erbium oxide precipitates due to the high thermodynamic stability of erbium oxide and the ubiquitous presence of oxygen during materials processing. Fundamental DFT calculations indicate that the He is energetically favored in the oxide relative to the bulk hydride. Activation energies for the motion of He in the oxide and at the oxide-hydride interface indicate that trapping is kinetically feasible. A simple kinetic Monte Carlo model is developed that demonstrates the degree of trapping of He as a function of temperature and oxide fraction.

More Details

Unraveling irradiation induced grain growth with in situ transmission electron microscopy and coordinated modeling

Applied Physics Letters

Bufford, Daniel C.; Abdeljawad, Fadi F.; Foiles, Stephen M.; Hattar, K.

Nanostructuring has been proposed as a method to enhance radiation tolerance, but many metallic systems are rejected due to significant concerns regarding long term grain boundary and interface stability. This work utilized recent advancements in transmission electron microscopy (TEM) to quantitatively characterize the grain size, texture, and individual grain boundary character in a nanocrystalline gold model system before and after in situ TEM ion irradiation with 10 MeV Si. The initial experimental measurements were fed into a mesoscale phase field model, which incorporates the role of irradiation-induced thermal events on boundary properties, to directly compare the observed and simulated grain growth with varied parameters. The observed microstructure evolution deviated subtly from previously reported normal grain growth in which some boundaries remained essentially static. In broader terms, the combined experimental and modeling techniques presented herein provide future avenues to enhance quantification and prediction of the thermal, mechanical, or radiation stability of grain boundaries in nanostructured crystalline systems.

More Details
Results 51–75 of 180
Results 51–75 of 180