Publications

Results 26–47 of 47
Skip to search filters

Removing cosmic spikes using a hyperspectral upper-bound spectrum method

Applied Spectroscopy

Anthony, Stephen M.; Timlin, Jerilyn A.

Cosmic ray spikes are especially problematic for hyperspectral imaging because of the large number of spikes often present and their negative effects upon subsequent chemometric analysis. Fortunately, while the large number of spectra acquired in a hyperspectral imaging data set increases the probability and number of cosmic spikes observed, the multitude of spectra can also aid in the effective recognition and removal of the cosmic spikes. Zhang and Ben-Amotz were perhaps the first to leverage the additional spatial dimension of hyperspectral data matrices (DM). They integrated principal component analysis (PCA) into the upper bound spectrum method (UBS), resulting in a hybrid method (UBS-DM) for hyperspectral images. Here, we expand upon their use of PCA, recognizing that principal components primarily present in only a few pixels most likely correspond to cosmic spikes. Eliminating the contribution of those principal components in those pixels improves the cosmic spike removal. Both simulated and experimental hyperspectral Raman image data sets are used to test the newly developed UBS-DM-hyperspectral (UBS-DM-HS) method which extends the UBS-DM method by leveraging characteristics of hyperspectral data sets. A comparison is provided between the performance of the UBS-DM-HS method and other methods suitable for despiking hyperspectral images, evaluating both their ability to remove cosmic ray spikes and the extent to which they introduce spectral bias.

More Details

Lipid membrane-assisted condensation and assembly of amphiphilic Janus particles

Soft Matter

Chambers, Mariah; Mallory, Stewart A.; Malone, Heather; Gao, Yuan; Anthony, Stephen M.; Yi, Yi; Cacciuto, Angelo; Yu, Yan

Amphiphilic Janus particles self-assemble into complex metastructures, but little is known about how their assembly might be modified by weak interactions with a nearby biological membrane surface. Here, we report an integrated experimental and molecular dynamics simulation study to investigate the self-assembly of amphiphilic Janus particles on a lipid membrane. We created an experimental system in which Janus particles are allowed to self-assemble in the same medium where zwitterionic lipids form giant unilamellar vesicles (GUVs). Janus particles spontaneously concentrated on the inner leaflet of the GUVs. They exhibited biased orientation and heterogeneous rotational dynamics as revealed by single particle rotational tracking. The combined experimental and simulation results show that Janus particles concentrate on the lipid membranes due to weak particle-lipid attraction, whereas the biased orientation of particles is driven predominantly by inter-particle interactions. This study demonstrates the potential of using lipid membranes to influence the self-assembly of Janus particles.

More Details

Tracking single-particle rotation during macrophage uptake

Soft Matter

Sanchez, Lucero; Patton, Paul; Anthony, Stephen M.; Yi, Yi; Yu, Yan

We investigated the rotational dynamics of single microparticles during their internalization by macrophage cells. The microparticles used were triblock patchy particles that display two fluorescent patches on their two poles. The optical anisotropy made it possible to directly visualize and quantify the orientation and rotation of the particles. We show that particles exhibit a mixture of fast and slow rotation as they are uptaken by macrophages and transiently undergo directional rotation during their entry into the cell. The size of the particles and the surface presentation of ligands exerted a negligible influence on this heterogeneity of particle rotation.

More Details

Supramolecular Energy Transfer in Self-Assembled Biomimetic Polymer Nanocomposites Based upon Green Bacterial Antenna Complexes

Timlin, Jerilyn A.; Anthony, Stephen M.; Collins, Aaron M.; Montano, Gabriel A.

Photosynthetic organisms use complex and regulated multichromophore assemblies, called lightharvesting (LH) antennas, to capture, concentrate and direct solar radiation to reaction centers that then carry out concomitant chemistry. Nature’s LH antennas are remarkable, operating with high efficiency in fluctuating environmental and photic conditions as well as being assembled with nanoscale precision thus, they often serve as inspiration in material design. The presented work was inspired by a natural LH antenna. We show that a diblock copolymer amphiphile enables the generation and integration of optically dense chromophore arrays, within a biomimetic polymer membrane. The entire construct is solution-processable, scalable and exhibits intra and inter-supramolecular energy transfer in a completely noncovalent design. This work demonstrates the potential of polymer membrane materials in generating spatial-energetic landscapes for photonic applications.

More Details
Results 26–47 of 47
Results 26–47 of 47