Publications

Results 51–87 of 87
Skip to search filters

Towards extreme-scale simulations for low mach fluids with second-generation trilinos

Parallel Processing Letters

Lin, Paul L.; Bettencourt, Matthew T.; Domino, Stefan P.; Fisher, Travis C.; Hoemmen, Mark F.; Hu, Jonathan J.; Phipps, Eric T.; Prokopenko, Andrey V.; Rajamanickam, Sivasankaran R.; Siefert, Christopher S.; Kennon, Stephen

Trilinos is an object-oriented software framework for the solution of large-scale, complex multi-physics engineering and scientific problems. While Trilinos was originally designed for scalable solutions of large problems, the fidelity needed by many simulations is significantly greater than what one could have envisioned two decades ago. When problem sizes exceed a billion elements even scalable applications and solver stacks require a complete revision. The second-generation Trilinos employs C++ templates in order to solve arbitrarily large problems. We present a case study of the integration of Trilinos with a low Mach fluids engineering application (SIERRA low Mach module/Nalu). Through the use of improved algorithms and better software engineering practices, we demonstrate good weak scaling for up to a nine billion element large eddy simulation (LES) problem on unstructured meshes with a 27 billion row matrix on 524,288 cores of an IBM Blue Gene/Q platform.

More Details

Mesoscale to plant-scale models of nuclear waste reprocessing

Rao, Rekha R.; Pawlowski, Roger P.; Brotherton, Christopher M.; Cipiti, Benjamin B.; Domino, Stefan P.; Jove Colon, Carlos F.; Moffat, Harry K.; Nemer, Martin N.; Noble, David R.; O'Hern, Timothy J.

Imported oil exacerabates our trade deficit and funds anti-American regimes. Nuclear Energy (NE) is a demonstrated technology with high efficiency. NE's two biggest political detriments are possible accidents and nuclear waste disposal. For NE policy, proliferation is the biggest obstacle. Nuclear waste can be reduced through reprocessing, where fuel rods are separated into various streams, some of which can be reused in reactors. Current process developed in the 1950s is dirty and expensive, U/Pu separation is the most critical. Fuel rods are sheared and dissolved in acid to extract fissile material in a centrifugal contactor. Plants have many contacts in series with other separations. We have taken a science and simulation-based approach to develop a modern reprocessing plant. Models of reprocessing plants are needed to support nuclear materials accountancy, nonproliferation, plant design, and plant scale-up.

More Details

Validation and uncertainty quantification of Fuego simulations of calorimeter heating in a wind-driven hydrocarbon pool fire

Luketa, Anay L.; Romero, Vicente J.; Domino, Stefan P.; Glaze, D.J.; Figueroa Faria, Victor G.

The objective of this work is to perform an uncertainty quantification (UQ) and model validation analysis of simulations of tests in the cross-wind test facility (XTF) at Sandia National Laboratories. In these tests, a calorimeter was subjected to a fire and the thermal response was measured via thermocouples. The UQ and validation analysis pertains to the experimental and predicted thermal response of the calorimeter. The calculations were performed using Sierra/Fuego/Syrinx/Calore, an Advanced Simulation and Computing (ASC) code capable of predicting object thermal response to a fire environment. Based on the validation results at eight diversely representative TC locations on the calorimeter the predicted calorimeter temperatures effectively bound the experimental temperatures. This post-validates Sandia's first integrated use of fire modeling with thermal response modeling and associated uncertainty estimates in an abnormal-thermal QMU analysis.

More Details

Highly scalable linear solvers on thousands of processors

Siefert, Christopher S.; Tuminaro, Raymond S.; Domino, Stefan P.; Robinson, Allen C.

In this report we summarize research into new parallel algebraic multigrid (AMG) methods. We first provide a introduction to parallel AMG. We then discuss our research in parallel AMG algorithms for very large scale platforms. We detail significant improvements in the AMG setup phase to a matrix-matrix multiplication kernel. We present a smoothed aggregation AMG algorithm with fewer communication synchronization points, and discuss its links to domain decomposition methods. Finally, we discuss a multigrid smoothing technique that utilizes two message passing layers for use on multicore processors.

More Details

A turbulence model for buoyant flows based on vorticity generation

Nicolette, Vernon F.; Tieszen, Sheldon R.; Black, Amalia R.; Domino, Stefan P.; O'Hern, Timothy J.

A turbulence model for buoyant flows has been developed in the context of a k-{var_epsilon} turbulence modeling approach. A production term is added to the turbulent kinetic energy equation based on dimensional reasoning using an appropriate time scale for buoyancy-induced turbulence taken from the vorticity conservation equation. The resulting turbulence model is calibrated against far field helium-air spread rate data, and validated with near source, strongly buoyant helium plume data sets. This model is more numerically stable and gives better predictions over a much broader range of mesh densities than the standard k-{var_epsilon} model for these strongly buoyant flows.

More Details

Validation of a simple turbulence model suitable for closure of temporally-filtered Navier-Stokes equations using a helium plume

Domino, Stefan P.; Black, Amalia R.

A validation study has been conducted for a turbulence model used to close the temporally filtered Navier Stokes (TFNS) equations. A turbulence model was purposely built to support fire simulations under the Accelerated Strategic Computing (ASC) program. The model was developed so that fire transients could be simulated and it has been implemented in SIERRA/Fuego. The model is validated using helium plume data acquired for the Weapon System Certification Campaign (C6) program in the Fire Laboratory for Model Accreditation and Experiments (FLAME). The helium plume experiments were chosen as the first validation problem for SIERRA/Fuego because they embody the first pair-wise coupling of scalar and momentum fields found in fire plumes. The validation study includes solution verification through grid and time step refinement studies. A formal statistical comparison is used to assess the model uncertainty. The metric uses the centerline vertical velocity of the plume. The results indicate that the simple model is within the 95% confidence interval of the data for elevations greater than 0.4 meters and is never more than twice the confidence interval from the data. The model clearly captures the dominant puffing mode in the fire but under resolves the vorticity field. Grid dependency of the model is noted.

More Details
Results 51–87 of 87
Results 51–87 of 87