Reliability Evaluation and Prediction of Commercial 4H-SiC Power MOSFETs
Abstract not provided.
Abstract not provided.
Abstract not provided.
A key to the long-term success of the photovoltaic (PV) industry is confidence in the reliability of PV systems. Inverters are the most commonly noted cause of PV system incidents triggered in the field. While not all of these incidents are reliability-related or even necessarily failures, they still result in a loss of generated power. With support from the U.S. Department of Energy's Solar Energy Technologies Program, Sandia National Laboratories organized a Utility-Scale Grid-Tied Inverter Reliability Workshop in Albuquerque, New Mexico, January 27-28, 2011. The workshop addressed the reliability of large (100-kilowatt+) grid-tied inverters and the implications when such inverters fail, evaluated inverter codes and standards, and provided discussion about opportunities to enhance inverter reliability. This report summarizes discussions and presentations from the workshop and identifies opportunities for future efforts.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Applied Physics Letters
Abstract not provided.
Applied Physics Letters
Abstract not provided.
Abstract not provided.
ECS Transactions
Flexible AC Transmission Systems (FACTS) use advanced power electronics to minimize reactive power loss on the grid. Power devices used in FACTS systems must be capable of switching several thousand amps at voltages of 1-10 kV. Traditionally, these systems have relied on silicon thyristors, but recently have also began to incorporate insulated gate bipolar transistors. FACTS systems present an opportunity for emerging SiC and GaN power transistors, which offer major efficiency gains. However, for these advanced materials to be considered for use in high consequence grid level systems like FACTS controllers, excellent reliability must be demonstrated. ©The Electrochemical Society.
Power conversion systems for energy storage and other distributed energy resource applications are among the drivers of the important role that power electronics plays in providing reliable electricity. Wide band gap semiconductors such as silicon carbide (SiC) and gallium nitride (GaN) will help increase the performance and efficiency of power electronic equipment while condition monitoring (CM) and prognostics and health management (PHM) will increase the operational availability of the equipment and thereby make it more cost effective. Voltage and/or temperature stress testing were performed on a number of SiC devices in order to accelerate failure modes and to identify measureable shifts in electrical characteristics which may provide early indication of those failures. Those shifts can be interpreted and modeled to provide prognostic signatures for use in CM and/or PHM. Such experiments will also lead to a deeper understanding of basic device physics and the degradation mechanisms behind failure.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report provides the DOE and industry with a general process for analyzing power electronics reliability. The analysis can help with understanding the main causes of failures, downtime, and cost and how to reduce them. One approach is to collect field maintenance data and use it directly to calculate reliability metrics related to each cause. Another approach is to model the functional structure of the equipment using a fault tree to derive system reliability from component reliability. Analysis of a fictitious device demonstrates the latter process. Optimization can use the resulting baseline model to decide how to improve reliability and/or lower costs. It is recommended that both electric utilities and equipment manufacturers make provisions to collect and share data in order to lay the groundwork for improving reliability into the future. Reliability analysis helps guide reliability improvements in hardware and software technology including condition monitoring and prognostics and health management.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Special Issue of International Journal of Power Management Electronics
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in IEEE Industry Application Society Transaction.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.