Publications

Results 1–25 of 63
Skip to search filters

Conditioning multi-model ensembles for disease forecasting

Ray, Jaideep R.; Cauthen, Katherine R.; Lefantzi, Sophia L.; Burks, Lynne B.

In this study we investigate how an ensemble of disease models can be conditioned to observational data, in a bid to improve its predictive skill. We use the ensemble of influenza forecasting models gathered by the US Centers for Disease Control and Prevention (CDC) as the exemplar. This ensemble is used every year to forecast the annual influenza outbreak in the United States. The models constituting this ensemble draw on very different modeling assumptions and approximations and are a diverse collection of methods to approximate epidemiological dynamics. Currently, each models' predictions are accorded the same importance, or weight, when compiling the ensemble's forecast. We consider this equally-weighted ensemble as the baseline case which has to be improved upon. In this study, we explore whether an ensemble forecast can be improved by "conditionine the ensemble to whatever observational data is available from the ongoing outbreak. "Conditionine can imply according the ensemble's members different weights which evolve over time, or simply perform the forecast using the top k (equally-weighted) models. In the latter case, the composition of the "top-k-see of models evolves over time. This is called "model averagine in statistics. We explore four methods to perform model-averaging, three of which are new.. We find that the CDC ensemble responds best to the "top-k-models" approach to model-averaging. All the new MA methods perform better than the baseline equally-weighted ensemble. The four model-averaging methods treat the models as black-boxes and simply use their forecasts as inputs i.e., one does not need access to the models at all, but rather only their forecasts. The model-averaging approaches reviewed in this report thus form a general framework for model-averaging any model ensemble.

More Details

Robust Bayesian calibration of a k-ϵ model for compressible jet-in-crossflow simulations

AIAA Journal

Ray, Jaideep R.; DeChant, Lawrence J.; Lefantzi, Sophia L.; Ling, Julia; Arunajatesan, Srinivasan A.

Compressible jet-in-crossflow interactions are difficult to simulate accurately using Reynolds-averaged Navier-Stokes (RANS) models. This could be due to simplifications inherent in RANS or the use of inappropriate RANS constants estimated by fitting to experiments of simple or canonical flows. Our previous work on Bayesian calibration of a k - ϵ model to experimental data had led to a weak hypothesis that inaccurate simulations could be due to inappropriate constants more than model-form inadequacies of RANS. In this work, Bayesian calibration of k - ϵ constants to a set of experiments that span a range of Mach numbers and jet strengths has been performed. The variation of the calibrated constants has been checked to assess the degree to which parametric estimates compensate for RANS's model-form errors. An analytical model of jet-in-crossflow interactions has also been developed, and estimates of k - ϵ constants that are free of any conflation of parametric and RANS's model-form uncertainties have been obtained. It has been found that the analytical k - ϵ constants provide mean-flow predictions that are similar to those provided by the calibrated constants. Further, both of them provide predictions that are far closer to experimental measurements than those computed using "nominal" values of these constants simply obtained from the literature. It can be concluded that the lack of predictive skill of RANS jet-in-crossflow simulations is mostly due to parametric inadequacies, and our analytical estimates may provide a simple way of obtaining predictive compressible jet-in-crossflow simulations.

More Details

Learning an eddy viscosity model using shrinkage and Bayesian calibration: A jet-in-crossflow case study

ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering

Ray, Jaideep R.; Lefantzi, Sophia L.; Arunajatesan, Srinivasan A.; DeChant, Lawrence J.

We demonstrate a statistical procedure for learning a high-order eddy viscosity model (EVM) from experimental data and using it to improve the predictive skill of a Reynoldsaveraged Navier-Stokes (RANS) simulator. The method is tested in a three-dimensional (3D), transonic jet-in-crossflow (JIC) configuration. The process starts with a cubic eddy viscosity model (CEVM) developed for incompressible flows. It is fitted to limited experimental JIC data using shrinkage regression. The shrinkage process removes all the terms from the model, except an intercept, a linear term, and a quadratic one involving the square of the vorticity. The shrunk eddy viscosity model is implemented in an RANS simulator and calibrated, using vorticity measurements, to infer three parameters. The calibration is Bayesian and is solved using a Markov chain Monte Carlo (MCMC) method. A 3D probability density distribution for the inferred parameters is constructed, thus quantifying the uncertainty in the estimate. The phenomenal cost of using a 3D flow simulator inside an MCMC loop is mitigated by using surrogate models ("curve-fits"). A support vector machine classifier (SVMC) is used to impose our prior belief regarding parameter values, specifically to exclude nonphysical parameter combinations. The calibrated model is compared, in terms of its predictive skill, to simulations using uncalibrated linear and CEVMs. We find that the calibrated model, with one quadratic term, is more accurate than the uncalibrated simulator. The model is also checked at a flow condition at which the model was not calibrated.

More Details

K-ε Turbulence Model Parameter Estimates Using an Approximate Self-similar Jet-in-Crossflow Solution

AIAA Journal

DeChant, Lawrence J.; Ray, Jaideep R.; Lefantzi, Sophia L.; Ling, Julia L.; Arunajatesan, Srinivasan A.

The k-ε turbulence model has been described as perhaps “the most widely used complete turbulence model.” This family of heuristic Reynolds Averaged Navier-Stokes (RANS) turbulence closures is supported by a suite of model parameters that have been estimated by demanding the satisfaction of well-established canonical flows such as homogeneous shear flow, log-law behavior, etc. While this procedure does yield a set of so-called nominal parameters, it is abundantly clear that they do not provide a universally satisfactory turbulence model that is capable of simulating complex flows. Recent work on the Bayesian calibration of the k-ε model using jet-in-crossflow wind tunnel data has yielded parameter estimates that are far more predictive than nominal parameter values. In this paper, we develop a self-similar asymptotic solution for axisymmetric jet-in-crossflow interactions and derive analytical estimates of the parameters that were inferred using Bayesian calibration. The self-similar method utilizes a near field approach to estimate the turbulence model parameters while retaining the classical far-field scaling to model flow field quantities. Our parameter values are seen to be far more predictive than the nominal values, as checked using RANS simulations and experimental measurements. They are also closer to the Bayesian estimates than the nominal parameters. A traditional simplified jet trajectory model is explicitly related to the turbulence model parameters and is shown to yield good agreement with measurement when utilizing the analytical derived turbulence model coefficients. Finally, the close agreement between the turbulence model coefficients obtained via Bayesian calibration and the analytically estimated coefficients derived in this paper is consistent with the contention that the Bayesian calibration approach is firmly rooted in the underlying physical description.

More Details

Continuous whole-system monitoring toward rapid understanding of production HPC applications and systems

Parallel Computing

Agelastos, Anthony M.; Allan, Benjamin A.; Brandt, James M.; Gentile, Ann C.; Lefantzi, Sophia L.; Monk, Stephen T.; Ogden, Jeffry B.; Rajan, Mahesh R.; Stevenson, Joel O.

A detailed understanding of HPC applications’ resource needs and their complex interactions with each other and HPC platform resources are critical to achieving scalability and performance. Such understanding has been difficult to achieve because typical application profiling tools do not capture the behaviors of codes under the potentially wide spectrum of actual production conditions and because typical monitoring tools do not capture system resource usage information with high enough fidelity to gain sufficient insight into application performance and demands. In this paper we present both system and application profiling results based on data obtained through synchronized system wide monitoring on a production HPC cluster at Sandia National Laboratories (SNL). We demonstrate analytic and visualization techniques that we are using to characterize application and system resource usage under production conditions for better understanding of application resource needs. Our goals are to improve application performance (through understanding application-to-resource mapping and system throughput) and to ensure that future system capabilities match their intended workloads.

More Details

Online mapping and forecasting of epidemics using open-source indicators

Ray, Jaideep R.; Lefantzi, Sophia L.; Bauer, Joshua B.; Khalil, Mohammad K.; Rothfuss, Andrew J.; Cauthen, Katherine R.; Finley, Patrick D.; Smith, Halley S.

Open-source indicators have been proposed as a way of tracking and forecasting disease outbreaks. Some, such are meteorological data, are readily available as reanalysis products. Others, such as those derived from our online behavior (web searches, media article etc.) are gathered easily and are more timely than public health reporting. In this study we investigate how these datastreams may be combined to provide useful epidemiological information. The investigation is performed by building data assimilation systems to track influenza in California and dengue in India. The first does not suffer from incomplete data and was chosen to explore disease modeling needs. The second explores the case when observational data is sparse and disease modeling complexities are beside the point. The two test cases are for opposite ends of the disease tracking spectrum. We find that data assimilation systems that produce disease activity maps can be constructed. Further, being able to combine multiple open-source datastreams is a necessity as any one individually is not very infor- mative. The data assimilation systems have very little in common except that they contain disease models, calibration algorithms and some ability to impute missing data. Thus while the data assimilation systems share the goal for accurate forecasting, they are practically designed to compensate for the shortcomings of the datastreams. Thus we expect them to be disease and location-specific.

More Details
Results 1–25 of 63
Results 1–25 of 63