Publications

Results 1–25 of 26
Skip to search filters

2021 Consequence Management Hotline Drill After Action Report

Shanks, Sonoya T.; Cerefice, Gary C.; Fournier, Sean D.; Hart, Kevin G.; Jaussi, Lynn J.; Rolfe, Kevin D.

In March 2021, a functional area drill was held at the Remote Sensing Laboratory–Nellis that focused on using CBRNResponder and the Digital Field Monitoring (DFM) tablets for sample hotline operations and the new paper Sample Control Forms (SCFs) for sample collection. Participants included staff trained and billeted as sample control specialists and Consequence Management Response Team (CMRT) field monitoring personnel. Teams were able to successfully gather and transfer samples to the sample control hotline staff through the manual process, though there were several noted areas for improvement. In July and October 2021, two additional functional area drills were held at Sandia National Laboratories that focused on field sample collection and custody transfer at the sample control hotline for the Consequence Management (CM) Radiological Assistance Program (RAP) program. The overarching goal of the drills was to evaluate the current CM process for sample collection, sample drop off, and sample control using the CBRNResponder mobile and web-based applications. The July 2021 drill had an additional focus to have a subset of samples analyzed by the local analytical laboratory, Radiation Protection Sample Diagnostics (RPSD) laboratory, to evaluate the Laboratory Access portal on CBRNResponder. All three drills were able to accomplish their objectives however, there were several issues noted (Observations: 25 Urgent, 29 Important, and 22 Improvement Opportunities). The observations were prioritized according to their impact on the mission as well as categorized to align with the programmatic functional area required to address the issue. This report provides additional detail on each observation for skillset/program leads and software developers to consider for future improvement or mandatory efforts.

More Details

Software Requirements for a Sample Check-in application in CBRNResponder

Fournier, Sean D.; Shanks, Sonoya T.; Allen, Mark B.

In 2021, functional area drills were held that focused on field sample collection and custody transfer at the sample control hotline for the Radiological Assistance Program (RAP) Consequence Management (CM) program. The overarching goal of these drills were to evaluate the current CM processes using the CBRNResponder mobile and web-based applications. There were several needs identified to improve CM processes and to stream/transfer data across multiple devices with and without internet: (1) A sample check-in process is needed to streamline current processes to reduce errors and create efficiencies, (2) the sample check-in application needs to be deployed as a mobile application and on the browser versions when on-line, and (3) the sample check-in process needs to function in an environment with internet connections and also in a standalone mode when internet is not available.

More Details

Summary Report for the Evaluation of Current QA Processes Within the FRMAC FAL and EPA MERL

Shanks, Sonoya T.; Redding, Ted R.; Jaussi, Lynn J.; Allen, Mark B.; Fournier, Sean D.; Leonard, Elliott J.

The Federal Radiological Monitoring and Assessment Center (FRMAC) relies on accurate and defensible analytical laboratory data to support its mission. Therefore, FRMAC must ensure that the environmental analytical laboratories providing analytical services maintain an ongoing capability to provide accurate analytical results to DOE. It is undeniable that the more Quality Assurance (QA) and Quality Control (QC) measures required of the laboratory, the less resources that are available for analysis of response samples. Being that QA and QC measures in general are understood to comprise a major effort related to a laboratory’s operations, requirements should only be considered if they are deemed “value-added” for the FRMAC mission. This report provides observations of areas for improvement and potential interoperability opportunities in the areas of Batch Quality Control Requirements, Written Communications, Data Review Processes, Data Reporting Processes, along with the lessons learned as they apply to items in the early phase of a response that will be critical for developing a more efficient, integrated response for future interactions between the FRMAC and EPA assets.

More Details

Summary Report for the Environmental Protection Agency MERL/FRMAC/RAP Mission Alignment Exercise held at the Savannah River Site on June 9-13 2014

Allen, Mark B.; Shanks, Sonoya T.; Fournier, Sean D.; Leonard, Elliott J.

From June 9th thru June 13th 2014, members of the Federal Radiological Monitoring and Assessment Center (FRMAC), the Environmental Protection Agency (EPA) and the Department of Energy Radiological Assistance Program (DOE RAP) Region-3 participated in a joint nuclear incident emergency response exercise at the Savannah River Site (SRS) near Aiken, South Carolina. The purpose of this exercise was to strengthen the interoperability relationship between the FRMAC, RAP, and the EPA Mobile Environmental Radiation Laboratory (MERL) stationed in Montgomery, Alabama. The exercise was designed to allowed members of the DOE RAP Region-3 team to collect soil, water, vegetation and air samples from SRS and submit them through an established FRMAC hotline. Once received and processed through the hotline, FRMAC delivered the samples to the EPA MERL for sample preparation and laboratory radiological analysis. Upon completion of laboratory analysis, data was reviewed and submitted back to FRMAC via an electronic data deliverable (EDD). As part of the exercise, an evaluation was conducted to identify gaps and potential improvements in each step of the processes. Additionally, noteworthy practices and potential future areas of interoperability between FRMAC and EPA were acknowledged. The exercise also provided a unique opportunity for FRMAC personnel to observe EPA sample receipt and sample preparation processes and to gain familiarity with the MERL laboratory instrumentation and radiation detection capabilities. The observations and lessons-learned from this exercise will be critical for developing a more efficient, integrated response for future interactions between the FRMAC and EPA assets.

More Details

Summary Report for the Environmental Protection Agency MERL/FRMAC Mission Alignment Exercise held at the Environmental Protection Agency Facility on June 24-26 2014

Allen, Mark B.; Shanks, Sonoya T.; Fournier, Sean D.; Leonard, Elliott J.

From June 24th thru June 26th 2014, members of the Federal Radiological Monitoring and Assessment Center (FRMAC), FRMAC Fly Away Laboratory, and the Environmental Protection Agency (EPA) participated in a joint nuclear incident emergency response/round robin exercise at the EPA facility in Las Vegas, Nevada. The purpose of this exercise was to strengthen the interoperability relationship between the FRMAC Fly Away Laboratory (FAL) and the EPA Mobile Environmental Radiation Laboratory (MERL) stationed in Las Vegas, Nevada. The exercise was designed to allow for immediate delivery of pre-staged, spiked samples to the EPA MERL and the FAL for sample preparation and radiological analysis. Upon completion of laboratory analysis, data was reviewed and submitted back to the FRMAC via an electronic data deliverable (EDD). In order to conduct a laboratory inter-comparison study, samples were then traded between the two laboratories and re-counted. As part of the exercise, an evaluation was conducted to identify gaps and potential areas for improvements for FRMAC, FAL and EPA operations. Additionally, noteworthy practices and potential future areas of interoperability opportunities between the FRMAC, FAL and EPA were acknowledged. The exercise also provided a unique opportunity for FRMAC personnel to observe EPA sample receipt and sample preparation processes and to gain familiarity with the MERL laboratory instrumentation and radiation detection capabilities. The areas for potential improvements and interoperability from this exercise will be critical for developing a more efficient, integrated response for future interactions between the FRMAC and EPA MERL assets.

More Details

Optimization of screening for radioactivity in urine by liquid scintillation

Reese, Robert P.; Shanks, Sonoya T.

Numerous events have or could have resulted in the inadvertent uptake of radionuclides by fairly large populations. Should a population receive an uptake, valuable information could be obtained by using liquid scintillation counting (LSC) techniques to quickly screen urine from a sample of the affected population. This study investigates such LSC parameters as discrimination, quench, volume, and count time to yield guidelines for analyzing urine in an emergency situation. Through analyzing variations of the volume and their relationships to the minimum detectable activity (MDA), the optimum ratio of sample size to scintillating chemical cocktail was found to be 1:3. Using this optimum volume size, the alpha MDA varied from 2100 pCi/L for a 30-second count time to 35 pCi/L for a 1000-minute count time. The typical count time used by the Sandia National Laboratories Radiation Protection Sample Diagnostics program is 30 minutes, which yields an alpha MDA of 200 pCi/L. Because MDA is inversely proportional to the square root of the count time, count time can be reduced in an emergency situation to achieve the desired MDA or response time. Note that approximately 25% of the response time is used to prepare the samples and complete the associated paperwork. It was also found that if the nuclide of interest is an unknown, pregenerated discriminator settings and efficiency calibrations can be used to produce an activity value within a factor of two, which is acceptable for a screening method.

More Details

The Navruz Project: Transboundary Monitoring for Radionuclides and Metals in Central Asia Rivers. Data Report

Passell, Howard D.; Passell, Howard D.; Barber, David S.; Betsill, J.D.; Littlefield, Adriane L.; Matthews, Robert F.; Mohagheghi, Amir H.; Shanks, Sonoya T.

The Navruz Project is a cooperative, transboundary, river monitoring project involving rivers and institutions in Kazakhstan, Kyrgyzstan, Tajikistan, and Uzbekistan, and facilitated by Sandia National Laboratories in the U.S. The Navruz Project focuses on waterborne radionuclides and metals because of their importance to public health and nuclear materials proliferation concerns in the region. The Project also collects data on basic water quality parameters. Data obtained in this project are shared among all participating countries and the public through a world-wide web site (http://www.cmc.sandia.org/Central/centralasia.html), and are available for use in further studies and in regional transboundary water resource management efforts. This report includes graphs showing selected data from the Fall 2000 and Spring 2001 sampling seasons. These data include all parameters grouped into six regions, including main rivers and some tributaries in the Amu Darya and Syr Darya river systems. This report also assembles all data (in tabular form) generated by the project from Fall 2000 through Fall 2001. This report comes as the second part of a planned three-part reporting process. The first report is the Sampling and Analysis Plan and Operational Manual, SAND 2002-0484. This is the second report.

More Details
Results 1–25 of 26
Results 1–25 of 26