High-power ion beam deposition of nanocomposite, multilayer and single-layer metal coatings :
Abstract not provided.
Abstract not provided.
Journal of Microelectromechanical Systems
The major focus of this study was to examine the feasibility of applying diamond-like nanocomposite (DLN) coatings on the sidewalls of Ni alloy parts fabricated using lithographie, galvanoformung and abformung (LIGA: a German acronym that means lithography, electroforming, and molding) for friction and wear control. Planar test coupons were employed to understand the friction mechanisms in regimes relevant to LIGA microsytems. Friction tests were conducted on planar test coupons as well as between LIGA-fabricated test structures in planar-sidewall and sidewall-sidewall configurations. Measurements were made in dry nitrogen and air with 50% relative humidity by enclosing the friction tester in an environmental chamber. In contrast to bare metal-metal contacts, minimal wear was exhibited for the DLN-coated LIGA NiMn alloy parts and test coupons. The low friction behavior of DLN was attributed to its ability to transfer to the rubbing counterface providing low interfacial shear at the sliding contact. The coating coverage and chemistry on the sidewalls and the substrate-coating interface integrity were examined by transmission electron microscopy, Automated eXpert Spectral Image Analysis, and electron backscatter diffraction on cross sections prepared by focused ion beam microscopy. The role of novel characterization techniques to evaluate the surface coatings for LIGA microsystems technology is highlighted. © 2009 IEEE.
Journal of Materials Research
In ductile metals, sliding contact induces plastic deformation resulting in subsurfaces, the mechanical properties of which are different from those of the bulk. This article describes a novel combination of nanomechanical test methods and analysis techniques to evaluate the mechanical behavior of the subsurfaces generated underneath a wear surface. In this methodology, nanoscratch techniques were first used to generate wear patterns as a function of load and number of cycles using a Hysitron TriboIndenter. Measurements were made on a (001) single crystal plane along two crystallographic directions, <001> and <011>. Nanoindentation was then used to measure mechanical properties in each wear pattern. The results on the (001) single crystal nickel plane showed that there was a strong increase in hardness with increasing applied load that was accompanied by a change in surface deformation. The amount of deformation underneath the wear patterns was examined from focused ion beam cross-sections of the wear patterns. © 2009 Materials Research Society.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Tribology Transactions
Abstract not provided.
Abstract not provided.
Abstract not provided.
Acta Materialia
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
International Journal of Applied Ceramic Technology
A process for deposition of silicon oxycarbonitride films from poly(urea)methyl vinyl silazane (PUMVS) by spin coating precursor solutions onto a substrate, followed by polymerization, cross-linking and pyrolysis has been developed. The cross-linked polymer films (350 nm thick), deposited on variety substrates (e.g., silicon, sapphire, zirconia), were pyrolyzed in nitrogen or ammonia environments either in a hot isostatic press or in a tube furnace. Their microstructure was characterized using infrared and Raman spectroscopy. The tribological (friction and wear) behavior was evaluated in dry nitrogen and air with 50% relative humidity using a unidirectional linear wear tester in a ball-on-disk configuration. Wear surfaces, transfer films and wear debris were analyzed by scanning electron micrograph (SEM)/energy dispersive spectroscopy (EDS). © 2006 The American Ceramic Society.
Proposed for publication in ACTA Materials.
Abstract not provided.
Abstract not provided.