Publications

Results 51–100 of 315
Skip to search filters

Using MLIR Framework for Codesign of ML Architectures Algorithms and Simulation Tools

Lewis, Cannada L.; Hughes, Clayton H.; Hammond, Simon D.; Rajamanickam, Sivasankaran R.

MLIR (Multi-Level Intermediate Representation), is an extensible compiler framework that supports high-level data structures and operation constructs. These higher-level code representations are particularly applicable to the artificial intelligence and machine learning (AI/ML) domain, allowing developers to more easily support upcoming heterogeneous AI/ML accelerators and develop flexible domain specific compilers/frameworks with higher-level intermediate representations (IRs) and advanced compiler optimizations. The result of using MLIR within the LLVM compiler framework is expected to yield significant improvement in the quality of generated machine code, which in turn will result in improved performance and hardware efficiency

More Details

ADELUS: A Performance-Portable Dense LU Solver for Distributed-Memory Hardware-Accelerated Systems

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Dang, Vinh Q.; Kotulski, J.D.; Rajamanickam, Sivasankaran R.

Solving dense systems of linear equations is essential in applications encountered in physics, mathematics, and engineering. This paper describes our current efforts toward the development of the ADELUS package for current and next generation distributed, accelerator-based, high-performance computing platforms. The package solves dense linear systems using partial pivoting LU factorization on distributed-memory systems with CPUs/GPUs. The matrix is block-mapped onto distributed memory on CPUs/GPUs and is solved as if it was torus-wrapped for an optimal balance of computation and communication. A permutation operation is performed to restore the results so the torus-wrap distribution is transparent to the user. This package targets performance portability by leveraging the abstractions provided in the Kokkos and Kokkos Kernels libraries. Comparison of the performance gains versus the state-of-the-art SLATE and DPLASMA GESV functionalities on the Summit supercomputer are provided. Preliminary performance results from large-scale electromagnetic simulations using ADELUS are also presented. The solver achieves 7.7 Petaflops on 7600 GPUs of the Sierra supercomputer translating to 16.9% efficiency.

More Details

FROSch Preconditioners for Land Ice Simulations of Greenland and Antarctica

Heinlein, Alexander H.; Perego, Mauro P.; Rajamanickam, Sivasankaran R.

Numerical simulations of Greenland and Antarctic ice sheets involve the solution of large-scale highly nonlinear systems of equations on complex shallow geometries. This work is concerned with the construction of Schwarz preconditioners for the solution of the associated tangent problems, which are challenging for solvers mainly because of the strong anisotropy of the meshes and wildly changing boundary conditions that can lead to poorly constrained problems on large portions of the domain. Here, two-level GDSW (Generalized Dryja–Smith–Widlund) type Schwarz preconditioners are applied to different land ice problems, i.e., a velocity problem, a temperature problem, as well as the coupling of the former two problems. We employ the MPI-parallel implementation of multi-level Schwarz preconditioners provided by the package FROSch (Fast and Robust Schwarz)from the Trilinos library. The strength of the proposed preconditioner is that it yields out-of-the-box scalable and robust preconditioners for the single physics problems. To our knowledge, this is the first time two-level Schwarz preconditioners are applied to the ice sheet problem and a scalable preconditioner has been used for the coupled problem. The pre-conditioner for the coupled problem differs from previous monolithic GDSW preconditioners in the sense that decoupled extension operators are used to compute the values in the interior of the sub-domains. Several approaches for improving the performance, such as reuse strategies and shared memory OpenMP parallelization, are explored as well. In our numerical study we target both uniform meshes of varying resolution for the Antarctic ice sheet as well as non uniform meshes for the Greenland ice sheet are considered. We present several weak and strong scaling studies confirming the robustness of the approach and the parallel scalability of the FROSch implementation. Among the highlights of the numerical results are a weak scaling study for up to 32 K processor cores (8 K MPI-ranks and 4 OpenMP threads) and 566 M degrees of freedom for the velocity problem as well as a strong scaling study for up to 4 K processor cores (and MPI-ranks) and 68 M degrees of freedom for the coupled problem.

More Details

Union: A Unified HW-SW Co-Design Ecosystem in MLIR for Evaluating Tensor Operations on Spatial Accelerators

Parallel Architectures and Compilation Techniques - Conference Proceedings, PACT

Jeong, Geonhwa; Kestor, Gokcen; Chatarasi, Prasanth; Parashar, Angshuman; Tsai, Po A.; Rajamanickam, Sivasankaran R.; Gioiosa, Roberto; Krishna, Tushar

To meet the extreme compute demands for deep learning across commercial and scientific applications, dataflow accelerators are becoming increasingly popular. While these “domain-specific” accelerators are not fully programmable like CPUs and GPUs, they retain varying levels of flexibility with respect to data orchestration, i.e., dataflow and tiling optimizations to enhance efficiency. There are several challenges when designing new algorithms and mapping approaches to execute the algorithms for a target problem on new hardware. Previous works have addressed these challenges individually. To address this challenge as a whole, in this work, we present a HW-SW codesign ecosystem for spatial accelerators called Union within the popular MLIR compiler infrastructure. Our framework allows exploring different algorithms and their mappings on several accelerator cost models. Union also includes a plug-and-play library of accelerator cost models and mappers which can easily be extended. The algorithms and accelerator cost models are connected via a novel mapping abstraction that captures the map space of spatial accelerators which can be systematically pruned based on constraints from the hardware, workload, and mapper. We demonstrate the value of Union for the community with several case studies which examine offloading different tensor operations (CONV/GEMM/Tensor Contraction) on diverse accelerator architectures using different mapping schemes.

More Details

Scalable asynchronous domain decomposition solvers

SIAM Journal on Scientific Computing

Glusa, Christian A.; Boman, Erik G.; Chow, Edmond; Rajamanickam, Sivasankaran R.; Szyld, Daniel B.

Parallel implementations of linear iterative solvers generally alternate between phases of data exchange and phases of local computation. Increasingly large problem sizes and more heterogeneous compute architectures make load balancing and the design of low latency network interconnects that are able to satisfy the communication requirements of linear solvers very challenging tasks. In particular, global communication patterns such as inner products become increasingly limiting at scale. We explore the use of asynchronous communication based on one-sided Message Passing Interface primitives in the context of domain decomposition solvers. In particular, a scalable asynchronous two-level Schwarz method is presented. We discuss practical issues encountered in the development of a scalable solver and show experimental results obtained on a state-of-the-art supercomputer system that illustrate the benefits of asynchronous solvers in load balanced as well as load imbalanced scenarios. Using the novel method, we can observe speedups of up to four times over its classical synchronous equivalent.

More Details

Distributed Memory Graph Coloring Algorithms for Multiple GPUs

Proceedings of IA3 2020: 10th Workshop on Irregular Applications: Architectures and Algorithms, Held in conjunction with SC 2020: The International Conference for High Performance Computing, Networking, Storage and Analysis

Bogle, Ian; Boman, Erik G.; Devine, Karen D.; Rajamanickam, Sivasankaran R.; Slota, George M.

Graph coloring is often used in parallelizing scientific computations that run in distributed and multi-GPU environments; it identifies sets of independent data that can be updated in parallel. Many algorithms exist for graph coloring on a single GPU or in distributed memory, but hybrid MPI+GPU algorithms have been unexplored until this work, to the best of our knowledge. We present several MPI+GPU coloring approaches that use implementations of the distributed coloring algorithms of Gebremedhin et al. and the shared-memory algorithms of Deveci et al. The on-node parallel coloring uses implementations in KokkosKernels, which provide parallelization for both multicore CPUs and GPUs. We further extend our approaches to solve for distance-2 coloring, giving the first known distributed and multi-GPU algorithm for this problem. In addition, we propose novel methods to reduce communication in distributed graph coloring. Our experiments show that our approaches operate efficiently on inputs too large to fit on a single GPU and scale up to graphs with 76.7 billion edges running on 128 GPUs.

More Details

A performance-portable nonhydrostatic atmospheric dycore for the energy exascale earth system model running at cloud-resolving resolutions

International Conference for High Performance Computing, Networking, Storage and Analysis, SC

Bertagna, Luca B.; Guba, Oksana G.; Taylor, Mark A.; Foucar, James G.; Larkin, Jeff; Bradley, Andrew M.; Rajamanickam, Sivasankaran R.; Salinger, Andrew G.

We present an effort to port the nonhydrostatic atmosphere dynamical core of the Energy Exascale Earth System Model (E3SM) to efficiently run on a variety of architectures, including conventional CPU, many-core CPU, and GPU. We specifically target cloud-resolving resolutions of 3 km and 1 km. To express on-node parallelism we use the C++ library Kokkos, which allows us to achieve a performance portable code in a largely architecture-independent way. Our C++ implementation is at least as fast as the original Fortran implementation on IBM Power9 and Intel Knights Landing processors, proving that the code refactor did not compromise the efficiency on CPU architectures. On the other hand, when using the GPUs, our implementation is able to achieve 0.97 Simulated Years Per Day, running on the full Summit supercomputer. To the best of our knowledge, this is the most achieved to date by any global atmosphere dynamical core running at such resolutions.

More Details

Performance Portable Supernode-based Sparse Triangular Solver for Manycore Architectures

ACM International Conference Proceeding Series

Yamazaki, Ichitaro Y.; Rajamanickam, Sivasankaran R.; Ellingwood, Nathan D.

Sparse triangular solver is an important kernel in many computational applications. However, a fast, parallel, sparse triangular solver on a manycore architecture such as GPU has been an open issue in the field for several years. In this paper, we develop a sparse triangular solver that takes advantage of the supernodal structures of the triangular matrices that come from the direct factorization of a sparse matrix. We implemented our solver using Kokkos and Kokkos Kernels such that our solver is portable to different manycore architectures. This has the additional benefit of allowing our triangular solver to use the team-level kernels and take advantage of the hierarchical parallelism available on the GPU. We compare the effects of different scheduling schemes on the performance and also investigate an algorithmic variant called the partitioned inverse. Our performance results on an NVIDIA V100 or P100 GPU demonstrate that our implementation can be 12.4 × or 19.5 × faster than the vendor optimized implementation in NVIDIA's CuSPARSE library.

More Details

SPHYNX: Spectral partitioning for HYbrid and aXelerator-enabled systems

Proceedings - 2020 IEEE 34th International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2020

Acer, Seher A.; Boman, Erik G.; Rajamanickam, Sivasankaran R.

Graph partitioning has been an important tool to partition the work among several processors to minimize the communication cost and balance the workload. While accelerator-based supercomputers are emerging to be the standard, the use of graph partitioning becomes even more important as applications are rapidly moving to these architectures. However, there is no scalable, distributed-memory, multi-GPU graph partitioner available for applications. We developed a spectral graph partitioner, Sphynx, using the portable, accelerator-friendly stack of the Trilinos framework. We use Sphnyx to systematically evaluate the various algorithmic choices in spectral partitioning with a focus on GPU performance. We perform those evaluations on irregular graphs, because state-of-the-art partitioners have the most difficulty on them. We demonstrate that Sphynx is up to 17x faster on GPUs compared to the case on CPUs, and up to 580x faster compared to a state-of-the-art multilevel partitioner. Sphynx provides a robust alternative for applications looking for a GPU-based partitioner.

More Details

ECP Report: Update on Proxy Applications and Vendor Interactions

Ang, Jim A.; Sweeney, Christine S.; Wolf, Michael W.; Ellis, John E.; Ghosh, Sayan G.; Kagawa, Ai K.; Huang, Yunzhi H.; Rajamanickam, Sivasankaran R.; Ramakrishnaiah, Vinay R.; Schram, Malachi S.; Yoo, Shinjae Y.

The ExaLearn miniGAN team (Ellis and Rajamanickam) have released miniGAN, a generative adversarial network(GAN) proxy application, through the ECP proxy application suite. miniGAN is the first machine learning proxy application in the suite (note: the ECP CANDLE project did previously release some benchmarks) and models the performance for training generator and discriminator networks. The GAN's generator and discriminator generate plausible 2D/3D maps and identify fake maps, respectively. miniGAN aims to be a proxy application for related applications in cosmology (CosmoFlow, ExaGAN) and wind energy (ExaWind). miniGAN has been developed so that optimized mathematical kernels (e.g., kernels provided by Kokkos Kernels) can be plugged into to the proxy application to explore potential performance improvements. miniGAN has been released as open source software and is available through the ECP proxy application website (https://proxyapps.exascaleproject.ordecp-proxy-appssuite/) and on GitHub (https://github.com/SandiaMLMiniApps/miniGAN). As part of this release, a generator is provided to generate a data set (series of images) that are inputs to the proxy application.

More Details
Results 51–100 of 315
Results 51–100 of 315