Publications

Results 1–25 of 42
Skip to search filters

Single-camera, single-shot, time-resolved laser-induced incandescence decay imaging

Optics Letters

Chen, Yi; Cenker, Emre; Richardson, Daniel R.; Kearney, S.P.; Halls, Benjamin R.; Skeen, Scott A.; Shaddix, Christopher R.; Guildenbecher, Daniel R.

Knowledge of soot particle sizes is important for understanding soot formation and heat transfer in combustion environments. Soot primary particle sizes can be estimated by measuring the decay of time-resolved laser-induced incandescence (TiRe-LII) signals. Existing methods for making planar TiRe-LII measurements require either multiple cameras or time-gate sweeping with multiple laser pulses, making these techniques difficult to apply in turbulent or unsteady combustion environments. Here, we report a technique for planar soot particle sizing using a single high-sensitivity, ultra-high-speed 10 MHz camera with a 50 ns gate and no intensifier. With this method, we demonstrate measurements of background flame luminosity, prompt LII, and TiRe-LII decay signals for particle sizing in a single laser shot. The particle sizing technique is first validated in a laminar non-premixed ethylene flame. Then, the method is applied to measurements in a turbulent ethylene jet flame.

More Details

Using ducted fuel injection to attenuate or prevent soot formation in mixing-controlled combustion strategies for engine applications

Applied Energy

Gehmlich, Ryan K.; Mueller, Charles J.; Ruth, D.J.; Nilsen, C.W.; Skeen, Scott A.; Manin, J.

Ducted fuel injection is a strategy that can be used to enhance the fuel/charge-gas mixing within the combustion chamber of a direct-injection compression-ignition engine. The concept involves injecting the fuel through a small tube within the combustion chamber to make the most fuel-rich regions of the micture in the autoignition zone leaner relative to a conventional free-spray configuration (i.e., a fuel spray that is not surrounded by a duct). This study is a follow-on to initial proof-of-concept experiments that also were conducted in a constant-volume combustion vessel. While the initial natural luminosity imaging experiments demonstrated that ducted fuel injection lowers soot incandescence dramatically, this study adds a more quantitative diffuse back-illumination diagnostic to measure soot mass, as well as investigates the effects on performance of varying duct geometry (axial gap, length, diameter, and inlet and outlet shapes), ambient density, and charge-gas dilution level. The result is that ducted fuel injection is further proven to be effective at lowering soot by 35–100% across a wide range of operating conditions and geometries, and guidance is offered on geometric parameters that are most important for improving performance and facilitating packaging for engine applications.

More Details

Measuring the soot onset temperature in high-pressure n-dodecane spray pyrolysis

Combustion and Flame

Skeen, Scott A.; Yasutomi, Koji

Soot formation in pyrolyzing sprays of n-dodecane is visualized and quantified in a high-pressure, high-temperature, constant-volume spray chamber at 38 bar, 76 bar, and 114 bar. Sprays of n-dodecane are injected at 500 bar from a single-hole, 186-µm orifice diameter fuel injector. We quantify the temporal evolution of the soot optical thickness and the total soot mass formed in the pyrolyzing sprays using a high-speed extinction imaging diagnostic. The vessel ambient temperature and pressure are varied independently to identify the soot onset temperature for n-dodecane pyrolysis. Linear extrapolation of the maximum soot formation rates as a function of ambient temperature reveals a soot onset temperature near 1450 K. The onset temperature determined here for n-dodecane is within 50 K of those previously measured along the centerline of atmospheric pressure coflow diffusion flames for smaller alkane fuels.

More Details

Inter-plume aerodynamics for gasoline spray collapse

International Journal of Engine Research

Sphicas, Panos; Pickett, Lyle M.; Skeen, Scott A.; Frank, Jonathan H.

The collapse or merging of individual plumes of direct-injection gasoline injectors is of fundamental importance to engine performance because of its impact on fuel-air mixing. However, the mechanisms of spray collapse are not fully understood and are difficult to predict. The purpose of this work is to study the aerodynamics in the inter-spray region, which can potentially lead to plume collapse. High-speed (100 kHz) particle image velocimetry is applied along a plane between plumes to observe the full temporal evolution of plume interaction and potential collapse, resolved for individual injection events. Supporting information along a line of sight is obtained using simultaneous diffused back illumination and Mie-scatter techniques. Experiments are performed under simulated engine conditions using a symmetric eight-hole injector in a high-temperature, high-pressure vessel at the “Spray G” operating conditions of the engine combustion network. Indicators of plume interaction and collapse include changes in counter-flow recirculation of ambient gas toward the injector along the axis of the injector or in the inter-plume region between plumes. The effect of ambient temperature and gas density on the inter-plume aerodynamics and the subsequent plume collapse are assessed. Increasing ambient temperature or density, with enhanced vaporization and momentum exchange, accelerates the plume interaction. Plume direction progressively shifts toward the injector axis with time, demonstrating that the plume interaction and collapse are inherently transient.

More Details

Ducted fuel injection: A new approach for lowering soot emissions from direct-injection engines

Applied Energy

Mueller, Charles J.; Nilsen, Christopher W.; Ruth, Daniel J.; Gehmlich, Ryan K.; Pickett, Lyle M.; Skeen, Scott A.

Designers of direct-injection compression-ignition engines use a variety of strategies to improve the fuel/charge-gas mixture within the combustion chamber for increased efficiency and reduced pollutant emissions. Strategies include the use of high fuel-injection pressures, multiple injections, small injector orifices, flow swirl, long-ignition-delay conditions, and oxygenated fuels. This is the first journal publication on a new mixing-enhancement strategy for emissions reduction: ducted fuel injection. The concept involves injecting fuel along the axis of a small cylindrical duct within the combustion chamber, to enhance the mixture in the autoignition zone relative to a conventional free-spray configuration (i.e., a fuel spray that is not surrounded by a duct). The results described herein, from initial proof-of-concept experiments conducted in a constant-volume combustion vessel, show dramatically lower soot incandescence from ducted fuel injection than from free sprays over a range of charge-gas conditions that are representative of those in modern direct-injection compression-ignition engines.

More Details

Understanding the ignition mechanism of high-pressure spray flames

Proceedings of the Combustion Institute

Dahms, Rainer N.; Paczko, Günter A.; Skeen, Scott A.; Pickett, Lyle M.

A conceptual model for turbulent ignition in high-pressure spray flames is presented. The model is motivated by first-principles simulations and optical diagnostics applied to the Sandia n-dodecane experiment. The combined analysis established a conceptual model for turbulent ignition in high-pressure spray flames which is based on a set of identified characteristic time scales. The suddenly forming steep gradients from successful high-temperature ignition initiate the propagation of a turbulent flame. It rapidly ignites the entire spray head on time scales which are generally significantly smaller than the corresponding cool flame wave time scales.

More Details

Soot formation during high-prebure pyrolysis of n-dodecane sprays

2016 Spring Technical Meeting of the Western States Section of the Combustion Institute, WSSCI 2016

Yasutomi, Koji; Skeen, Scott A.

Soot formation in pyrolyzing sprays of n-dodecane is visualized and quantified in a high-prebure, high-Temperature, constant-volume spray chamber at prebures relevant to modern comprebion ignition engines. Sprays of n-dodecane are injected at 500 bar from a single-hole, 186-μm orifice diameter, diesel injector belonging to the family of Engine Combustion Network (ECN) Spray D injectors. We quantify the temporal evolution of the total soot mab formed in the pyrolyzing sprays using a high-speed extinction imaging diagnostic. The ambient temperature and prebure of the nearly quiescent flow into which the sprays are injected are varied independently to identify a soot "onset" temperature for n-dodecane pyrolysis and to explore potential prebure dependencies of this limit. Radiation corrected temperatures measured at three axial locations near the radial boundary of the penetrating spray using a fine-wire Type-R thermocouple provide a relation between the bulk temperature measured by a prebure transducer and the core temperature driving soot formation. This relation is used to determine the soot onset temperature. The timeresolved total soot mab is further evaluated to determine prebure dependencies on the rate of soot formation.

More Details

Large eddy simulation of a reacting spray flame with multiple realizations under compression ignition engine conditions

Combustion and Flame

Pei, Yuanjiang; Som, Sibendu; Pomraning, Eric; Senecal, Peter K.; Skeen, Scott A.; Manin, Julien; Pickett, Lyle M.

An n-dodecane spray flame (Spray A from Engine Combustion Network) was simulated using a δ function combustion model along with a dynamic structure large eddy simulation (LES) model to evaluate its performance at engine-relevant conditions and to understand the transient behavior of this turbulent flame. The liquid spray was treated with a traditional Lagrangian method and the gas-phase reaction was modeled using a δ function combustion model. A 103-species skeletal mechanism was used for the n-dodecane chemical kinetic model. Significantly different flame structures and ignition processes are observed for the LES compared to those of Reynolds-averaged Navier-Stokes (RANS) predictions. The LES data suggests that the first ignition initiates in a lean mixture and propagates to a rich mixture, and the main ignition happens in the rich mixture, preferably less than 0.14 in mixture fraction space. LES was observed to have multiple ignition spots in the mixing layer simultaneously while the main ignition initiates in a clearly asymmetric fashion. The temporal flame development also indicates the flame stabilization mechanism is auto-ignition controlled. Soot predictions by LES present much better agreement with experiments compared to RANS, both qualitatively and quantitatively. Multiple realizations for LES were performed to understand the realization to realization variation and to establish best practices for ensemble-averaging diesel spray flames. The relevance index analysis suggests that an average of 5 and 6 realizations can reach 99% of similarity to the target average of 16 realizations on the mixture fraction and temperature fields, respectively. However, more realizations are necessary for the hydroxide (OH) and soot mass fractions due to their high fluctuations.

More Details
Results 1–25 of 42
Results 1–25 of 42