Developing a coupled thermal-mechanical-porous model for electrolyte flow in a molten salt battery
Abstract not provided.
Abstract not provided.
Temperature histories on the surface of a body that has been subjected to a rapid, highenergy surface deposition process can be di cult to determine, especially if it is impossible to directly observe the surface or attach a temperature sensor to it. In this report, we explore two methods for estimating the temperature history of the surface through the use of a sensor embedded within the body very near to the surface. First, the maximum sensor temperature is directly correlated with the peak surface temperature. However, it is observed that the sensor data is both delayed in time and greatly attenuated in magnitude, making this approach unfeasible. Secondly, we propose an algorithm that involves tting the solution to a one-dimensional instantaneous energy solution problem to both the sensor data and to the results of a one-dimensional CVFEM code. This algorithm is shown to be able to estimate the surface temperature 20 C.
Abstract not provided.
Journal of the Electrochemical Society
Lithium-ion battery electrodes rely on a percolated network of solid particles and binder that must maintain a high electronic conductivity in order to function. Coupled mechanical and electrochemical simulations may be able to elucidate the mechanisms for capacity fade. We present a framework for coupled simulations of electrode mechanics that includes swelling, deformation, and stress generation driven by lithium intercalation. These simulations are performed at the mesoscale, which requires 3D reconstruction of the electrode microstructure from experimental imaging or particle size distributions. We present a novel approach for utilizing these complex reconstructions within a finite element code. A mechanical model that involves anisotropic swelling in response to lithium intercalation drives the deformation. Stresses arise from small-scale particle features and lithium concentration gradients. However, we demonstrate, for the first time, that the largest stresses arise from particle-to-particle contacts, making it important to accurately represent the electrode microstructure on the multi-particle scale. Including anisotropy in the swelling mechanics adds considerably more complexity to the stresses and can significantly enhance peak particle stresses. Shear forces arise at contacts due to the misorientation of the lattice structure. These simulations will be used to study mechanical degradation of the electrode structure through charge/discharge cycles.