Continuum modeling of Nanoparticle Transport in the Vasculature
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The overall goal of this work was to develop, establish the credibility of, and deliver to our NW users a multi-physics performance model of a single cell of a thermally activated battery.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of the Electrochemical Society
Lithium-ion battery electrodes are composed of active material particles, binder, and conductive additives that form an electrolyte-filled porous particle composite. The mesoscale (particle-scale) interplay of electrochemistry, mechanical deformation, and transport through this tortuous multi-component network dictates the performance of a battery at the cell-level. Effective electrode properties connect mesoscale phenomena with computationally feasible battery-scale simulations. We utilize published tomography data to reconstruct a large subsection (1000+ particles) of an NMC333 cathode into a computational mesh and extract electrode-scale effective properties from finite element continuum-scale simulations. We present a novel method to preferentially place a composite binder phase throughout the mesostructure, a necessary approach due difficulty distinguishing between non-active phases in tomographic data. We compare stress generation and effective thermal, electrical, and ionic conductivities across several binder placement approaches. Isotropic lithiation-dependent mechanical swelling of the NMC particles and the consideration of strain-dependent composite binder conductivity significantly impact the resulting effective property trends and stresses generated. Our results suggest that composite binder location significantly affects mesoscale behavior, indicating that a binder coating on active particles is not sufficient and that more accurate approaches should be used when calculating effective properties that will inform battery-scale models in this inherently multi-scale battery simulation challenge.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Electrochemical Energy Conversion and Storage
Battery performance, while observed at the macroscale, is primarily governed by the bicontinuous mesoscale network of the active particles and a polymeric conductive binder in its electrodes. Manufacturing processes affect this mesostructure, and therefore battery performance, in ways that are not always clear outside of empirical relationships. Directly studying the role of the mesostructure is difficult due to the small particle sizes (a few microns) and large mesoscale structures. Mesoscale simulation, however, is an emerging technique that allows the investigation into how particle-scale phenomena affect electrode behavior. In this manuscript, we discuss our computational approach for modeling electrochemical, mechanical, and thermal phenomena of lithium-ion batteries at the mesoscale. We review our recent and ongoing simulation investigations and discuss a path forward for additional simulation insights.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Electrochimica Acta
As LiCoO2 cathodes are charged, delithiation of the LiCoO2 active material leads to an increase in the lattice spacing, causing swelling of the particles. When these particles are packed into a bicontinuous, percolated network, as is the case in a battery electrode, this swelling leads to the generation of significant mechanical stress. In this study we performed coupled electrochemical-mechanical simulations of the charging of a LiCoO2 cathode in order to elucidate the mechanisms of stress generation and the effect of charge rate and microstructure on these stresses. Energy dispersive spectroscopy combined with scanning electron microscopy imaging was used to create 3D reconstructions of a LiCoO2 cathode, and the Conformal Decomposition Finite Element Method is used to automatically generate computational meshes on this reconstructed microstructure. Replacement of the ideal solution Fickian diffusion model, typically used in battery simulations, with a more general non-ideal solution model shows substantially smaller gradients of lithium within particles than is typically observed in the literature. Using this more general model, lithium gradients only appear at states of charge where the open-circuit voltage is relatively constant. While lithium gradients do affect the mechanical stress state in the particles, the maximum stresses are always found in the fully-charged state and are strongly affected by the local details of the microstructure and particle-to-particle contacts. These coupled electrochemical-mechanical simulations begin to yield insight into the partitioning of volume change between reducing pore space and macroscopically swelling the electrode. Finally, preliminary studies that include the presence of the polymeric binder suggest that it can greatly impact stress generation and that it is an important area for future research.
Journal of the Electrochemical Society
Electrical conductivity is key to the performance of thermal battery cathodes. In this work we present the effects of manufacturing and processing conditions on the electrical conductivity of Li/FeS2 thermal battery cathodes. We use finite element simulations to compute the conductivity of three-dimensional microcomputed tomography cathode microstructures and compare results to experimental impedance spectroscopy measurements. A regression analysis reveals a predictive relationship between composition, processing conditions, and electrical conductivity; a trend which is largely erased after thermally-induced deformation. The trend applies to both experimental and simulation results, although is not as apparent in simulations. This research is a step toward a more fundamental understanding of the effects of processing and composition on thermal battery component microstructure, properties, and performance.
Journal of the Electrochemical Society
The polymer-composite binder used in lithium-ion battery electrodes must both hold the electrodes together and augment their electrical conductivity while subjected to mechanical stresses caused by active material volume changes due to lithiation and delithiation. We have discovered that cyclic mechanical stresses cause significant degradation in the binder electrical conductivity. After just 160 mechanical cycles, the conductivity of polyvinylidene fluoride (PVDF):carbon black binder dropped between 45-75%. This degradation in binder conductivity has been shown to be quite general, occurring over a range of carbon black concentrations, with and without absorbed electrolyte solvent and for different polymer manufacturers. Mechanical cycling of lithium cobalt oxide (LiCoO2 ) cathodes caused a similar degradation, reducing the effective electrical conductivity by 30-40%. Mesoscale simulations on a reconstructed experimental cathode geometry predicted the binder conductivity degradation will have a proportional impact on cathode electrical conductivity, in qualitative agreement with the experimental measurements. Finally, ohmic resistance measurements were made on complete batteries. Direct comparisons between electrochemical cycling and mechanical cycling show consistent trends in the conductivity decline. This evidence supports a new mechanism for performance decline of rechargeable lithium-ion batteries during operation - electrochemically-induced mechanical stresses that degrade binder conductivity, increasing the internal resistance of the battery with cycling.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Lithium-ion battery particle-scale (non-porous electrode) simulations applied to resolved electrode geometries predict localized phenomena and can lead to better informed decisions on electrode design and manufacturing. This work develops and implements a fully-coupled finite volume methodology for the simulation of the electrochemical equations in a lithium-ion battery cell. The model implementation is used to investigate 3D battery electrode architectures that offer potential energy density and power density improvements over traditional layer-by-layer particle bed battery geometries. Advancement of micro-scale additive manufacturing techniques has made it possible to fabricate these 3D electrode microarchitectures. A variety of 3D battery electrode geometries are simulated and compared across various battery discharge rates and length scales in order to quantify performance trends and investigate geometrical factors that improve battery performance. The energy density and power density of the 3D battery microstructures are compared in several ways, including a uniform surface area to volume ratio comparison as well as a comparison requiring a minimum manufacturable feature size. Significant performance improvements over traditional particle bed electrode designs are observed, and electrode microarchitectures derived from minimal surfaces are shown to be superior. A reduced-order volume-averaged porous electrode theory formulation for these unique 3D batteries is also developed, allowing simulations on the full-battery scale. Electrode concentration gradients are modeled using the diffusion length method, and results for plate and cylinder electrode geometries are compared to particle-scale simulation results. Additionally, effective diffusion lengths that minimize error with respect to particle-scale results for gyroid and Schwarz P electrode microstructures are determined.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
ECS Transactions
Li/FeS2 thermal batteries provide a stable, robust, and reliable power source capable of long-term electrical energy storage without performance degradation. These systems rely on the electrical conductivity of FeS2 cathodes for critical performance parameters such as power and lifetime, and on permeability of the electrolyte through the solid FeS2 particles for ion transfer. The effects of component composition, manufacturing conditions, and the mechanical deformation on conductivity and permeability have not been studied. We present simulation results from a finite element computer model compared with impedance spectroscopy electrical conductivity experiments. Our methods elucidate the combined effects of slumping, particle size distribution, composition, and pellet density on properties related to electrical conduction in Li/FeS2 thermal battery cathodes.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.