Publications

Results 26–50 of 78
Skip to search filters

Sierra/SolidMechanics 5.0 Capabilities in Development

Beckwith, Frank B.; Bergel, Guy L.; de Frias, Gabriel J.; Manktelow, Kevin M.; Merewether, Mark T.; Miller, Scott T.; Mosby, Matthew D.; Plews, Julia A.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse D.; Treweek, Benjamin T.; Tupek, Michael R.; Veilleux, Michael V.; Wagman, Ellen B.

This user’s guide documents capabilities in Sierra/SolidMechanics which remain “in-development” and thus are not tested and hardened to the standards of capabilities listed in Sierra/SM 5.0 User’s Guide. Capabilities documented herein are available in Sierra/SM for experimental use only until their official release. These capabilities include, but are not limited to, novel discretization approaches such as peridynamics and the conforming reproducing kernel (CRK) method, numerical fracture and failure modeling aids such as the extended finite element method (XFEM) and $\textit{J}$-integral, explicit time step control techniques, dynamic mesh rebalancing, as well as a variety of new material models and finite element formulations.

More Details

Sierra/SolidMechanics 5.0 User's Guide Addendum for Shock Capabilities

Beckwith, Frank B.; Bergel, Guy L.; de Frias, Gabriel J.; Manktelow, Kevin M.; Merewether, Mark T.; Miller, Scott T.; Mosby, Matthew D.; Plews, Julia A.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse D.; Treweek, Benjamin T.; Tupek, Michael R.; Veilleux, Michael V.; Wagman, Ellen B.

This is an addendum to the Sierra/SolidMechanics 5.0 User’s Guide that documents additional capabilities available only in alternate versions of the Sierra/SolidMechanics (Sierra/SM) code. These alternate versions are enhanced to provide capabilities that are regulated under the U.S. Department of State’s International Traffic in Arms Regulations (ITAR) export control rules. The ITAR regulated codes are only distributed to entities that comply with the ITAR export control requirements. The ITAR enhancements to Sierra/SM include material models with an energy-dependent pressure response (appropriate for very large deformations and strain rates) and capabilities for blast modeling. This document is an addendum only; the standard Sierra/SolidMechanics 5.0 User’s Guide should be referenced for most general descriptions of code capability and use.

More Details

Sierra/SolidMechanics 5.0 Theory Manual

Beckwith, Frank B.; Bergel, Guy L.; de Frias, Gabriel J.; Manktelow, Kevin M.; Merewether, Mark T.; Miller, Scott T.; Mosby, Matthew D.; Plews, Julia A.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse D.; Treweek, Benjamin T.; Tupek, Michael R.; Veilleux, Michael V.; Wagman, Ellen B.

Presented in this document are the theoretical aspects of capabilities contained in the Sierra/SM code. This manuscript serves as an ideal starting point for understanding the theoretical foundations of the code. For a comprehensive study of these capabilities, the reader is encouraged to explore the many references to scientific articles and textbooks contained in this manual. It is important to point out that some capabilities are still in development and may not be presented in this document. Further updates to this manuscript will be made as these capabilities come closer to production level.

More Details

Sierra/SolidMechanics 5.0 Example Problems Manual

Beckwith, Frank B.; Bergel, Guy L.; de Frias, Gabriel J.; Manktelow, Kevin M.; Merewether, Mark T.; Miller, Scott T.; Mosby, Matthew D.; Plews, Julia A.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse D.; Treweek, Benjamin T.; Tupek, Michael R.; Veilleux, Michael V.; Wagman, Ellen B.

Presented in this document are tests that exist in the Sierra/SolidMechanics example problem suite, which is a subset of the Sierra / SM regression and performance test suite. These examples showcase common and advanced code capabilities. A wide variety of other regression and verification tests exist in the Sierra / SM test suite that are not included in this manual.

More Details

Sierra/SolidMechanics 5.0 Verification Tests Manual

Beckwith, Frank B.; Bergel, Guy L.; de Frias, Gabriel J.; Manktelow, Kevin M.; Merewether, Mark T.; Miller, Scott T.; Mosby, Matthew D.; Plews, Julia A.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse D.; Treweek, Benjamin T.; Tupek, Michael R.; Veilleux, Michael V.; Wagman, Ellen B.

Presented in this document is a small portion of the tests that exist in the Sierra/SolidMechanics (Sierra/SM) verification test suite. Most of these tests are run nightly with the Sierra / SM code suite, and the results of the test are checked versus the correct analytical result. For each of the tests presented in this document, the test setup, a description of the analytic solution, and comparison of the Sierra / SM code results to the analytic solution is provided. Mesh convergence is also checked on a nightly basis for several of these tests. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems. Additional example problems are provided in the Sierra/SM Example Problems Manual. Note, many other verification tests exist in the Sierra/SM test suite, but have not yet been included in this manual.

More Details

Sierra/SolidMechanics 5.0 Goodyear Specific

Beckwith, Frank B.; Bergel, Guy L.; de Frias, Gabriel J.; Manktelow, Kevin M.; Merewether, Mark T.; Miller, Scott T.; Mosby, Matthew D.; Plews, Julia A.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse D.; Treweek, Benjamin T.; Tupek, Michael R.; Veilleux, Michael V.; Wagman, Ellen B.

Sierra/SolidMechanics (Sierra/SM) is a Lagrangian, three-dimensional finite element analysis code for solids and structures subjected to extensive contact and large deformations, encompassing explicit and implicit dynamic as well as quasistatic loading regimes. This document supplements the primary Sierra/SM 5.0 User’s Guide, describing capabilities specific to Goodyear analysis use cases, including additional implicit solver options, material models, finite element formulations, and contact settings.

More Details

Sierra/SD - User's Manual

Bunting, Gregory B.; Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Ferri, Brian A.; Hardesty, Sean H.; Lindsay, Payton L.; Miller, Scott T.; Stevens, B.L.; Walsh, Timothy W.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high-fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a user’s guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.

More Details

Sierra/SD - Theory Manual

Bunting, Gregory B.; Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Ferri, Brian A.; Hardesty, Sean H.; Lindsay, Payton L.; Miller, Scott T.; Stevens, B.L.; Walsh, Timothy W.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed description of how to use Sierra/SD, we refer the reader to User’s Manual. Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Sierra/SD are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer_notes manual, the user’s notes and of course the material in the open literature.

More Details

Sierra/SD – Verification Test Manual – 5.0

Bunting, Gregory B.; Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Ferri, Brian A.; Hardesty, Sean H.; Lindsay, Payton L.; Miller, Scott T.; Stevens, B.L.; Walsh, Timothy W.

This document presents tests from the Sierra Structural Mechanics verification test suite. Each of these tests is run nightly with the Sierra/SD code suite and the results of the test checked versus the correct analytic result. For each of the tests presented in this document the test setup, derivation of the analytic solution, and comparison of the Sierra/SD code results to the analytic solution is provided. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems.

More Details

Sierra/SD - How To Manual, 5.0

Bunting, Gregory B.; Crane, Nathan K.; Day, David B.; Dohrmann, Clark R.; Ferri, Brian A.; Hardesty, Sean H.; Lindsay, Payton L.; Miller, Scott T.; Stevens, B.L.; Walsh, Timothy W.

The “how to” document guides the user through complicated aspects of software usage. It should supplement both the User’s manual and the Theory document, by providing examples and detailed discussion that reduce learning time for complex set ups. These documents are intended to be used together. We will not formally list all parameters for an input here – see the User’s manual for this. All the examples in the “How To” document are part of the Sierra/SD test suite, and each will run with no modification. The nature of this document casts together a number of rather unrelated procedures. Grouping them is difficult. Please try to use the table of contents and the index as a guide in finding the analyses of interest.

More Details

Sierra/SD-- How To Manual - 4.58

Bunting, Gregory B.; Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Ferri, Brian A.; Hardesty, Sean H.; Lindsay, Payton L.; Miller, Scott T.; Stevens, B.L.; Walsh, Timothy W.

The “how to” document is designed to help walk the analyst through difficult aspects of software usage. It should supplement both the User’s manual and the Theory document, by providing examples and detailed discussion that reduce learning time for complex set ups. These documents are intended to be used together. We will not formally list all parameters for an input here – see the User’s manual for this. All the examples in the “How To” document are part of the Sierra/SD test suite, and each will run with no modification. The nature of this document casts together a number of rather unrelated procedures. Grouping them is difficult. Please try to use the table of contents and the index as a guide in finding the analyses of interest.

More Details

Sierra/SolidMechanics 4.58 User's Guide Addendum for Shock Capabilities

Merewether, Mark T.; Treweek, Benjamin T.; Wagman, Ellen B.; Beckwith, Frank B.; de Frias, Gabriel J.; Koester, Jacob K.; Thomas, Jesse D.; Plews, Julia A.; Belcourt, Kenneth N.; Manktelow, Kevin M.; Mosby, Matthew D.; Veilleux, Michael V.; Tupek, Michael R.; Miller, Scott T.; Shelton, Timothy S.; Porter, V.L.; Gampert, Scott G.

This is an addendum to the Sierra/SolidMechanics 4.58 User's Guide that documents additional capabilities available only in alternate versions of the Sierra/SolidMechanics (Sierra/SM) code. These alternate versions are enhanced to provide capabilities that are regulated under the U.S. Department of State's International Traffic in Arms Regulations (ITAR) export control rules. The ITAR regulated codes are only distributed to entities that comply with the ITAR export control requirements. The ITAR enhancements to Sierra/SM include material models with an energy-dependent pressure response (appropriate for very large deformations and strain rates) and capabilities for blast modeling. This document is an addendum only; the standard Sierra/SolidMechanics 4.58 User's Guide should be referenced for most general descriptions of code capability and use.

More Details

Sierra/SolidMechanics 4.58. Capabilities In Development

Merewether, Mark T.; Treweek, Benjamin T.; Wagman, Ellen B.; Beckwith, Frank B.; de Frias, Gabriel J.; Koester, Jacob K.; Thomas, Jesse D.; Plews, Julia A.; Belcourt, Kenneth N.; Manktelow, Kevin M.; Mosby, Matthew D.; Veilleux, Michael V.; Tupek, Michael R.; Miller, Scott T.; Shelton, Timothy S.; Porter, V.L.; Gampert, Scott G.

This user’s guide documents capabilities in Sierra/SolidMechanics which remain “in-development” and thus are not tested and hardened to the standards of capabilities listed in Sierra/SM 4.58 User’s Guide. Capabilities documented herein are available in Sierra/SM for experimental use only until their official release. These capabilities include, but are not limited to, novel discretization approaches such as peridynamics and the reproducing kernel particle method (RKPM), numerical fracture and failure modeling aids such as the extended finite element method (XFEM) and /-integral, explicit time step control techniques, dynamic mesh rebalancing, as well as a variety of new material models and finite element formulations

More Details

Sierra/SD–Verification Test Manual - 4.58

Bunting, Gregory B.; Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Ferri, Brian A.; Hardesty, Sean H.; Lindsay, Payton L.; Miller, Scott T.; Stevens, B.L.; Walsh, Timothy W.

This document presents tests from the Sierra Structural Mechanics verification test suite. Each of these tests is run nightly with the Sierra/SD code suite and the results of the test checked versus the correct analytic result. For each of the tests presented in this document the test setup, derivation of the analytic solution, and comparison of the Sierra/SD code results to the analytic solution is provided. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems.

More Details

Sierra/SolidMechanics 4.56 User's Guide: Addendum for Shock Capabilities

Merewether, Mark T.; Plews, Julia A.; de Frias, Gabriel J.; Mosby, Matthew D.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse D.; Tupek, Michael R.; Veilleux, Michael V.; Manktelow, Kevin M.; Beckwith, Frank B.; Belcourt, Kenneth N.; Miller, Scott T.; Treweek, Benjamin T.; Wagman, Ellen B.; Koester, Jacob K.

This is an addendum to the Sierra/SolidMechanics 4.56 User's Guide that documents additional capabilities available only in alternate versions of the Sierra/SolidMechanics (Sierra/SM) code. These alternate versions are enhanced to provide capabilities that are regulated under the U.S. Department of State's International Traffic in Arms Regulations (ITAR) export control rules. The ITAR regulated codes are only distributed to entities that comply with the ITAR export control requirements. The ITAR enhancements to Sierra/SM include material models with an energy-dependent pressure response (appropriate for very large deformations and strain rates) and capabilities for blast modeling. This document is an addendum only; the standard Sierra/SolidMechanics 4.56 User's Guide should be referenced for most general descriptions of code capability and use.

More Details

Sierra/SolidMechanics 4.56 Capabilities In Development

Merewether, Mark T.; Plews, Julia A.; de Frias, Gabriel J.; Mosby, Matthew D.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse D.; Tupek, Michael R.; Veilleux, Michael V.; Manktelow, Kevin M.; Beckwith, Frank B.; Belcourt, Kenneth N.; Miller, Scott T.; Treweek, Benjamin T.; Wagman, Ellen B.; Koester, Jacob K.

This user's guide documents capabilities in Sierra/SolidMechanics which remain "in-development" and thus are not tested and hardened to the standards of capabilities listed in Sierra/SM 4.56 User's Guide. Capabilities documented herein are available in Sierra/SM for experimental use only until their official release. These capabilities include, but are not limited to, novel discretization approaches such as peridynamics and the reproducing kernel particle method (RKPM), numerical fracture and failure modeling aids such as the extended finite element method (XFEM) and J-integral, explicit time step control techniques, dynamic mesh rebalancing, as well as a variety of new material models and finite element formulations.

More Details

Sierra/SolidMechanics 4.56 Theory Manual

Beckwith, Frank B.; Belcourt, Kenneth N.; de Frias, Gabriel J.; Koester, Jacob K.; Manktelow, Kevin M.; Merewether, Mark T.; Miller, Scott T.; Mosby, Matthew D.; Plews, Julia A.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse T.; Treweek, Benjamin T.; Tupek, Michael R.; Veilleux, Michael V.; Wagman, Ellen B.

Presented in this document are the theoretical aspects of capabilities contained in the Sierra/SM code. This manuscript serves as an ideal starting point for understanding the theoretical foundations of the code. For a comprehensive study of these capabilities, the reader is encouraged to explore the many references to scientific articles and textbooks contained in this manual. It is important to point out that some capabilities are still in development and may not be presented in this document. Further updates to this manuscript will be made as these capabilities come closer to production level.

More Details

Sierra/SolidMechanics 4.56 Goodyear User's Guide

Merewether, Mark T.; Plews, Julia A.; de Frias, Gabriel J.; Mosby, Matthew D.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse D.; Tupek, Michael R.; Veilleux, Michael V.; Manktelow, Kevin M.; Beckwith, Frank B.; Belcourt, Kenneth N.; Miller, Scott T.; Treweek, Benjamin T.; Wagman, Ellen B.; Koester, Jacob K.

Sierra/SolidMechanics (Sierra/SM) is a Lagrangian, three-dimensional finite element analysis code for solids and structures subjected to extensive contact and large deformations, encompassing explicit and implicit dynamic as well as quasistatic loading regimes. This document supplements the primary Sierra/SM 4.56 User’s Guide, describing capabilities specific to Goodyear analysis use cases, including additional implicit solver options, material models, finite element formulations, and contact settings.

More Details

Sierra/SolidMechanics 4.54 Example Problems Manual

Veilleux, Michael V.; Beckwith, Frank B.; Belcourt, Kenneth N.; de Frias, Gabriel J.; Manktelow, Kevin M.; Merewether, Mark T.; Miller, Scott T.; Mosby, Matthew D.; Plews, Julia A.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse D.; Tupek, Michael R.

Presented in this document are tests that exist in the Sierra/SolidMechanics example problem suite, which is a subset of the Sierra/SM regression and performance test suite. These examples showcase common and advanced code capabilities. A wide variety of other regression and verification tests exist in the Sierra/SM test suite that are not included in this manual.

More Details

Sierra/SolidMechanics 4.54 Theory Manual

Veilleux, Michael V.; Beckwith, Frank B.; Belcourt, Kenneth N.; de Frias, Gabriel J.; Manktelow, Kevin M.; Merewether, Mark T.; Miller, Scott T.; Mosby, Matthew D.; Plews, Julia A.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse D.; Tupek, Michael R.

Presented in this document are the theoretical aspects of capabilities contained in the Sierra/SM code. This manuscript serves as an ideal starting point for understanding the theoretical foundations of the code. For a comprehensive study of these capabilities, the reader is encouraged to explore the many references to scientific articles and textbooks contained in this manual. It is important to point out that some capabilities are still in development and may not be presented in this document. Further updates to this manuscript will be made as these capabilities come closer to production level.

More Details
Results 26–50 of 78
Results 26–50 of 78