Publications

Results 51–100 of 126
Skip to search filters

Wafer-Scale TaOx Device Variability and Implications for Neuromorphic Computing Applications

IEEE International Reliability Physics Symposium Proceedings

Bennett, Christopher H.; Garland, Diana; Jacobs-Gedrim, Robin B.; Agarwal, Sapan A.; Marinella, Matthew J.

Scaling arrays of non-volatile memory devices from academic demonstrations to reliable, manufacturable systems requires a better understanding of variability at array and wafer-scale levels. CrossSim models the accuracy of neural networks implemented on an analog resistive memory accelerator using the cycle-to-cycle variability of a single device. In this work, we extend this modeling tool to account for device-to-device variation in a realistic way, and evaluate the impact of this reliability issue in the context of neuromorphic online learning tasks.

More Details

Designing and modeling analog neural network training accelerators

2019 International Symposium on VLSI Technology, Systems and Application, VLSI-TSA 2019

Agarwal, Sapan A.; Jacobs-Gedrim, Robin B.; Bennett, Christopher H.; Hsia, Alexander W.; Adee, Shane M.; Hughart, David R.; Fuller, Elliot J.; Li, Yiyang; Talin, A.A.; Marinella, Matthew J.

Analog crossbars have the potential to reduce the energy and latency required to train a neural network by three orders of magnitude when compared to an optimized digital ASIC. The crossbar simulator, CrossSim, can be used to model device nonidealities and determine what device properties are needed to create an accurate neural network accelerator. Experimentally measured device statistics are used to simulate neural network training accuracy and compare different classes of devices including TaOx ReRAM, Lir-Co-Oz devices, and conventional floating gate SONOS memories. A technique called 'Periodic Carry' can overcomes device nonidealities by using a positional number system while maintaining the benefit of parallel analog matrix operations.

More Details

Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing

Science

Fuller, Elliot J.; Keene, Scott T.; Melianas, Armantas; Wang, Zhongrui; Agarwal, Sapan A.; Li, Yiyang; Tuchman, Yaakov; James, Conrad D.; Marinella, Matthew J.; Yang, J.J.; Salleo, Alberto; Talin, A.A.

Neuromorphic computers could overcome efficiency bottlenecks inherent to conventional computing through parallel programming and readout of artificial neural network weights in a crossbar memory array. However, selective and linear weight updates and <10-nanoampere read currents are required for learning that surpasses conventional computing efficiency. We introduce an ionic floating-gate memory array based on a polymer redox transistor connected to a conductive-bridge memory (CBM). Selective and linear programming of a redox transistor array is executed in parallel by overcoming the bridging threshold voltage of the CBMs. Synaptic weight readout with currents <10 nanoamperes is achieved by diluting the conductive polymer with an insulator to decrease the conductance. The redox transistors endure >1 billion write-read operations and support >1-megahertz write-read frequencies.

More Details

Sparse Data Acquisition on Emerging Memory Architectures

IEEE Access

Quach, Tu-Thach Q.; Agarwal, Sapan A.; James, Conrad D.; Marinella, Matthew J.; Aimone, James B.

Emerging memory devices, such as resistive crossbars, have the capacity to store large amounts of data in a single array. Acquiring the data stored in large-capacity crossbars in a sequential fashion can become a bottleneck. We present practical methods, based on sparse sampling, to quickly acquire sparse data stored on emerging memory devices that support the basic summation kernel, reducing the acquisition time from linear to sub-linear. The experimental results show that at least an order of magnitude improvement in acquisition time can be achieved when the data are sparse. In addition, we show that the energy cost associated with our approach is competitive to that of the sequential method.

More Details

Training a Neural Network on Analog TaOx ReRAM Devices Irradiated With Heavy Ions: Effects on Classification Accuracy Demonstrated With CrossSim

IEEE Transactions on Nuclear Science

Jacobs-Gedrim, Robin B.; Hughart, David R.; Agarwal, Sapan A.; Vizkelethy, Gyorgy V.; Bielejec, E.S.; Vaandrager, Bastiaan L.; Swanson, Scot E.; Knisely, K.E.; Taggart, J.L.; Barnaby, H.J.; Marinella, M.J.

The image classification accuracy of a TaOx ReRAM-based neuromorphic computing accelerator is evaluated after intentionally inducing a displacement damage up to a fluence of 1014 2.5-MeV Si ions/cm2 on the analog devices that are used to store weights. Results are consistent with a radiation-induced oxygen vacancy production mechanism. When the device is in the high-resistance state during heavy ion radiation, the device resistance, linearity, and accuracy after training are only affected by high fluence levels. The findings in this paper are in accordance with the results of previous studies on TaOx-based digital resistive random access memory. When the device is in the low-resistance state during irradiation, no resistance change was detected, but devices with a 4-kΩ inline resistor did show a reduction in accuracy after training at 1014 2.5-MeV Si ions/cm2. This indicates that changes in resistance can only be somewhat correlated with changes to devices' analog properties. This paper demonstrates that TaOx devices are radiation tolerant not only for high radiation environment digital memory applications but also when operated in an analog mode suitable for neuromorphic computation and training on new data sets.

More Details

All-Solid-State Synaptic Transistor with Ultralow Conductance for Neuromorphic Computing

Advanced Functional Materials

Yang, Chuan S.; Shang, Da S.; Liu, Nan; Fuller, Elliot J.; Agarwal, Sapan A.; Talin, A.A.; Li, Yong Q.; Shen, Bao G.; Sun, Young

Electronic synaptic devices are important building blocks for neuromorphic computational systems that can go beyond the constraints of von Neumann architecture. Although two-terminal memristive devices are demonstrated to be possible candidates, they suffer from several shortcomings related to the filament formation mechanism including nonlinear switching, write noise, and high device conductance, all of which limit the accuracy and energy efficiency. Electrochemical three-terminal transistors, in which the channel conductance can be tuned without filament formation provide an alternative platform for synaptic electronics. Here, an all-solid-state electrochemical transistor made with Li ion–based solid dielectric and 2D α-phase molybdenum oxide (α-MoO3) nanosheets as the channel is demonstrated. These devices achieve nonvolatile conductance modulation in an ultralow conductance regime (<75 nS) by reversible intercalation of Li ions into the α-MoO3 lattice. Based on this operating mechanism, the essential functionalities of synapses, such as short- and long-term synaptic plasticity and bidirectional near-linear analog weight update are demonstrated. Simulations using the handwritten digit data sets demonstrate high recognition accuracy (94.1%) of the synaptic transistor arrays. These results provide an insight into the application of 2D oxides for large-scale, energy-efficient neuromorphic computing networks.

More Details

Impact of Linearity and Write Noise of Analog Resistive Memory Devices in a Neural Algorithm Accelerator

Conference Proceedings - IEEE International Conference on Rebooting Computing (ICRC)

Jacobs-Gedrim, Robin B.; Agarwal, Sapan A.; Knisely, Kathrine E.; Stevens, Jim E.; Van Heukelom, Michael V.; Hughart, David R.; James, Conrad D.; Marinella, Matthew J.

Resistive memory (ReRAM) shows promise for use as an analog synapse element in energy-efficient neural network algorithm accelerators. A particularly important application is the training of neural networks, as this is the most computationally-intensive procedure in using a neural algorithm. However, training a network with analog ReRAM synapses can significantly reduce the accuracy at the algorithm level. In order to assess this degradation, analog properties of ReRAM devices were measured and hand-written digit recognition accuracy was modeled for the training using backpropagation. Bipolar filamentary devices utilizing three material systems were measured and compared: one oxygen vacancy system, Ta-TaOx, and two conducting metallization systems, Cu-SiO2, and Ag/chalcogenide. Analog properties and conductance ranges of the devices are optimized by measuring the response to varying voltage pulse characteristics. Key analog device properties which degrade the accuracy are update linearity and write noise. Write noise may improve as a function of device manufacturing maturity, but write nonlinearity appears relatively consistent among the different device material systems and is found to be the most significant factor affecting accuracy. As a result, this suggests that new materials and/or fundamentally different resistive switching mechanisms may be required to improve device linearity and achieve higher algorithm training accuracy.

More Details

Piecewise empirical model (PEM) of resistive memory for pulsed analog and neuromorphic applications

Journal of Computational Electronics

Niroula, John N.; Agarwal, Sapan A.; Jacobs-Gedrim, Robin B.; Schiek, Richard L.; Hughart, David R.; Hsia, Alexander W.; James, Conrad D.; Marinella, Matthew J.

With the end of Dennard scaling and the ever-increasing need for more efficient, faster computation, resistive switching devices (ReRAM), often referred to as memristors, are a promising candidate for next generation computer hardware. These devices show particular promise for use in an analog neuromorphic computing accelerator as they can be tuned to multiple states and be updated like the weights in neuromorphic algorithms. Modeling a ReRAM-based neuromorphic computing accelerator requires a compact model capable of correctly simulating the small weight update behavior associated with neuromorphic training. These small updates have a nonlinear dependence on the initial state, which has a significant impact on neural network training. Consequently, we propose the piecewise empirical model (PEM), an empirically derived general purpose compact model that can accurately capture the nonlinearity of an arbitrary two-terminal device to match pulse measurements important for neuromorphic computing applications. By defining the state of the device to be proportional to its current, the model parameters can be extracted from a series of voltages pulses that mimic the behavior of a device in an analog neuromorphic computing accelerator. This allows for a general, accurate, and intuitive compact circuit model that is applicable to different resistance-switching device technologies. In this work, we explain the details of the model, implement the model in the circuit simulator Xyce, and give an example of its usage to model a specific Ta / TaO x device.

More Details

Impact of linearity and write noise of analog resistive memory devices in a neural algorithm accelerator

2017 IEEE International Conference on Rebooting Computing, ICRC 2017 - Proceedings

Jacobs-Gedrim, Robin B.; Agarwal, Sapan A.; Knisely, Kathrine E.; Stevens, Jim E.; Van Heukelom, Michael V.; Hughart, David R.; Niroula, John; James, Conrad D.; Marinella, Matthew J.

Resistive memory (ReRAM) shows promise for use as an analog synapse element in energy-efficient neural network algorithm accelerators. A particularly important application is the training of neural networks, as this is the most computationally-intensive procedure in using a neural algorithm. However, training a network with analog ReRAM synapses can significantly reduce the accuracy at the algorithm level. In order to assess this degradation, analog properties of ReRAM devices were measured and hand-written digit recognition accuracy was modeled for the training using backpropagation. Bipolar filamentary devices utilizing three material systems were measured and compared: one oxygen vacancy system, Ta-TaOx, and two conducting metallization systems, Cu-SiO2, and Ag/chalcogenide. Analog properties and conductance ranges of the devices are optimized by measuring the response to varying voltage pulse characteristics. Key analog device properties which degrade the accuracy are update linearity and write noise. Write noise may improve as a function of device manufacturing maturity, but write nonlinearity appears relatively consistent among the different device material systems and is found to be the most significant factor affecting accuracy. This suggests that new materials and/or fundamentally different resistive switching mechanisms may be required to improve device linearity and achieve higher algorithm training accuracy.

More Details

Visible Quantum Nanophotonics

Subramania, Ganapathi S.; Wang, George T.; Fischer, Arthur J.; Wierer, Jonathan J.; Tsao, Jeffrey Y.; Koleske, Daniel K.; Coltrin, Michael E.; Agarwal, Sapan A.; Anderson, P.D.; Leung, Ben L.

The goal of this LDRD is to develop a quantum nanophotonics capability that will allow practical control over electron (hole) and photon confinement in more than one dimension. We plan to use quantum dots (QDs) to control electrons, and photonic crystals to control photons. InGaN QDs will be fabricated using quantum size control processes, and methods will be developed to add epitaxial layers for hole injection and surface passivation. We will also explore photonic crystal nanofabrication techniques using both additive and subtractive fabrication processes, which can tailor photonic crystal properties. These two efforts will be combined by incorporating the QDs into photonic crystal surface emitting lasers (PCSELs). Modeling will be performed using finite-different time-domain and gain analysis to optimize QD-PCSEL designs that balance laser performance with the ability to nano-fabricate structures. Finally, we will develop design rules for QD-PCSEL architectures, to understand their performance possibilities and limits.

More Details

Achieving ideal accuracies in analog neuromorphic computing using periodic carry

Digest of Technical Papers - Symposium on VLSI Technology

Agarwal, Sapan A.; Jacobs-Gedrim, Robin B.; Hsia, Alexander W.; Hughart, David R.; Fuller, Elliot J.; Talin, A.A.; James, Conrad D.; Plimpton, Steven J.; Marinella, Matthew J.

Analog resistive memories promise to reduce the energy of neural networks by orders of magnitude. However, the write variability and write nonlinearity of current devices prevent neural networks from training to high accuracy. We present a novel periodic carry method that uses a positional number system to overcome this while maintaining the benefit of parallel analog matrix operations. We demonstrate how noisy, nonlinear TaOx devices that could only train to 80% accuracy on MNIST, can now reach 97% accuracy, only 1% away from an ideal numeric accuracy of 98%. On a file type dataset, the TaOx devices achieve ideal numeric accuracy. In addition, low noise, linear Li1-xCoO2 devices train to ideal numeric accuracies using periodic carry on both datasets.

More Details

Designing an analog crossbar based neuromorphic accelerator

2017 5th Berkeley Symposium on Energy Efficient Electronic Systems, E3S 2017 - Proceedings

Agarwal, Sapan A.; Hsia, Alexander W.; Jacobs-Gedrim, Robin B.; Hughart, David R.; Plimpton, Steven J.; James, Conrad D.; Marinella, Matthew J.

Resistive memory crossbars can dramatically reduce the energy required to perform computations in neural algorithms by three orders of magnitude when compared to an optimized digital ASIC [1]. For data intensive applications, the computational energy is dominated by moving data between the processor, SRAM, and DRAM. Analog crossbars overcome this by allowing data to be processed directly at each memory element. Analog crossbars accelerate three key operations that are the bulk of the computation in a neural network as illustrated in Fig 1: vector matrix multiplies (VMM), matrix vector multiplies (MVM), and outer product rank 1 updates (OPU)[2]. For an NxN crossbar the energy for each operation scales as the number of memory elements O(N2) [2]. This is because the crossbar performs its entire computation in one step, charging all the capacitances only once. Thus the CV2 energy of the array scales as array size. This fundamentally better than trying to read or write a digital memory. Each row of any NxN digital memory must be accessed one at a time, resulting in N columns of length O(N) being charged N times, requiring O(N3) energy to read a digital memory. Thus an analog crossbar has a fundamental O(N) energy scaling advantage over a digital system. Furthermore, if the read operation is done at low voltage and is therefore noise limited, the read energy can even be independent of the crossbar size, O(1) [2].

More Details

Compensating for parasitic voltage drops in resistive memory arrays

2017 IEEE 9th International Memory Workshop, IMW 2017

Agarwal, Sapan A.; Schiek, Richard S.; Marinella, Matthew J.

Parasitic resistances cause devices in a resistive memory array to experience different read/write voltages depending on the device location, resulting in uneven writes and larger leakage currents. We present a new method to compensate for this by adding extra series resistance to the drivers to equalize the parasitic resistance seen by all the devices. This allows for uniform writes, enabling multi-level cells with greater numbers of distinguishable levels, and reduced write power, enabling larger arrays.

More Details

A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing

Nature Materials

Van De Burgt, Yoeri; Lubberman, Ewout; Fuller, Elliot J.; Keene, Scott T.; Faria, Grégorio C.; Agarwal, Sapan A.; Marinella, Matthew J.; Talin, A.A.; Salleo, Alberto

The brain is capable of massively parallel information processing while consuming only ~1-100 fJ per synaptic event1,2. Inspired by the efficiency of the brain, CMOS-based neural architectures3 and memristors4,5 are being developed for pattern recognition and machine learning. However, the volatility, design complexity and high supply voltages for CMOS architectures, and the stochastic and energy-costly switching of memristors complicate the path to achieve the interconnectivity, information density, and energy efficiency of the brain using either approach. Here we describe an electrochemical neuromorphic organic device (ENODe) operating with a fundamentally different mechanism from existing memristors. ENODeswitches at lowvoltage and energy (<10 pJ for 103 μm2 devices), displays >500 distinct, non-volatile conductance states within a~1V range, and achieves high classification accuracy when implemented in neural network simulations. Plastic ENODes are also fabricated on flexible substrates enabling the integration of neuromorphic functionality in stretchable electronic systems6,7. Mechanical flexibility makes ENODes compatible with three-dimensional architectures, opening a path towards extreme interconnectivity comparable to the human brain.

More Details
Results 51–100 of 126
Results 51–100 of 126