Publications

Results 26–50 of 58
Skip to search filters

Enhanced infrared detectors using resonant structures combined with thin type-II superlattice absorbers

Applied Physics Letters

Goldflam, Michael G.; Kadlec, Emil A.; Olson, B.V.; Klem, John F.; Hawkins, Samuel D.; Parameswaran, Sivasubramanian P.; Coon, W.T.; Keeler, Gordon A.; Fortune, Torben R.; Tauke-Pedretti, Anna; Wendt, J.R.; Shaner, Eric A.; Davids, Paul D.; Kim, Jin K.; Peters, D.W.

We examined the spectral responsivity of a 1.77 μm thick type-II superlattice based long-wave infrared detector in combination with metallic nanoantennas. Coupling between the Fabry-Pérot cavity formed by the semiconductor layer and the resonant nanoantennas on its surface enables spectral selectivity, while also increasing peak quantum efficiency to over 50%. Electromagnetic simulations reveal that this high responsivity is a direct result of field-enhancement in the absorber layer, enabling significant absorption in spite of the absorber's subwavelength thickness. Notably, thinning of the absorbing material could ultimately yield lower photodetector noise through a reduction in dark current while improving photocarrier collection efficiency. The temperature- and incident-angle-independent spectral response observed in these devices allows for operation over a wide range of temperatures and optical systems. This detector paradigm demonstrates potential benefits to device performance with applications throughout the infrared.

More Details

Evidence of a Shockley-Read-Hall Defect State Independent of Band-Edge Energy in InAs/In(As,Sb) Type-II Superlattices

Physical Review Applied

Aytac, Yigit A.; Olson, Ben O.; Kim, Jin K.; Shaner, Eric A.; Hawkins, Samuel D.; Klem, John F.; Flatte, Michael E.; Boggess, Tom B.

A set of seven InAs/InAsSb type-II superlattices (T2SLs) were designed to have speci c bandgap energies between 290 meV (4.3 m) and 135 meV (9.2 m) in order to study the e ects of the T2SL bandgap energy on the minority carrier lifetime. A temperature dependent optical pump-probe technique is used to measure the carrier lifetimes, and the e ect of a mid-gap defect level on the carrier recombination dynamics is reported. The Shockley-Read-Hall (SRH) defect state is found to be at energy of approximately -250 12 meV relative to the valence band edge of bulk GaSb for the entire set of T2SL structures, even though the T2SL valence band edge shifts by 155 meV on the same scale. These results indicate that the SRH defect state in InAs/InAsSb T2SLs is singular and is nearly independent of the exact position of the T2SL bandgap or band edge energies. They also suggest the possibility of engineering the T2SL structure such that the SRH state is removed completely from the bandgap, a result that should signi cantly increase the minority carrier lifetime.

More Details

Auger recombination in long-wave infrared InAs/InAsSb type-II superlattices

Applied Physics Letters

Olson, B.V.; Grein, C.H.; Kim, Jin K.; Kadlec, Emil A.; Klem, John F.; Hawkins, Samuel D.; Shaner, Eric A.

The Auger lifetime is a critical intrinsic parameter for infrared photodetectors as it determines the longest potential minority carrier lifetime and consequently the fundamental limitations to their performance. Here, Auger recombination is characterized in a long-wave infrared InAs/InAsSb type-II superlattice. Auger coefficients as small as 7.1 × 10 - 26 cm6/s are experimentally measured using carrier lifetime data at temperatures in the range of 20 K-80 K. The data are compared to Auger-1 coefficients predicted using a 14-band K · p electronic structure model and to coefficients calculated for HgCdTe of the same bandgap. The experimental superlattice Auger coefficients are found to be an order-of-magnitude smaller than HgCdTe.

More Details

Minority carrier lifetime and dark current measurements in mid-wavelength infrared InAs0.91Sb0.09 alloy nBn photodetectors

Applied Physics Letters

Olson, B.V.; Kim, Jin K.; Kadlec, Emil A.; Klem, John F.; Hawkins, Samuel D.; Leonhardt, Darin L.; Coon, W.T.; Fortune, Torben R.; Cavaliere, Melissa A.; Tauke-Pedretti, Anna; Shaner, Eric A.

Carrier lifetime and dark current measurements are reported for a mid-wavelength infrared InAs0.91Sb0.09 alloy nBn photodetector. Minority carrier lifetimes are measured using a non-contact time-resolved microwave technique on unprocessed portions of the nBn wafer and the Auger recombination Bloch function parameter is determined to be |F1F2|=0.292. The measured lifetimes are also used to calculate the expected diffusion dark current of the nBn devices and are compared with the experimental dark current measured in processed photodetector pixels from the same wafer. Excellent agreement is found between the two, highlighting the important relationship between lifetimes and diffusion currents in nBn photodetectors.

More Details

Giant supercurrent states in a superconductor-InAs/GaSb-superconductor junction

Journal of Applied Physics

Shi, Xiaoyan S.; Yu, Wenlong; Jiang, Zhigang; Andrei Bernevig, B.; Pan, Wei P.; Hawkins, Samuel D.; Klem, John F.

Superconductivity in topological materials has attracted a great deal of interest in both electron physics and material sciences since the theoretical predictions that Majorana fermions can be realized in topological superconductors. Topological superconductivity could be realized in a type II, band-inverted, InAs/GaSb quantum well if it is in proximity to a conventional superconductor. Here, we report observations of the proximity effect induced giant supercurrent states in an InAs/GaSb bilayer system that is sandwiched between two superconducting tantalum electrodes to form a superconductor-InAs/GaSb-superconductor junction. Electron transport results show that the supercurrent states can be preserved in a surprisingly large temperature-magnetic field (T - H) parameter space. In addition, the evolution of differential resistance in T and H reveals an interesting superconducting gap structure.

More Details

Temperature-dependent optical measurements of the dominant recombination mechanisms in InAs/InAsSb type-2 superlattices

Journal of Applied Physics

Olson, Benjamin V.; Shaner, Eric A.; Kim, Jin K.; Hawkins, Samuel D.; Klem, John F.; Boggoss, Thomas F.; Flatte, Michael E.; Aytac, Yigit A.

We present that temperature-dependent measurements of carrier recombination rates using a time-resolved optical pump-probe technique are reported for mid-wave infrared InAs/InAs1-xSbx type-2 superlattices (T2SLs). By engineering the layer widths and alloy compositions, a 16 K band-gap of ~235 ± 10 meV was achieved for five unintentionally and four intentionally doped T2SLs. Carrier lifetimes were determined by fitting lifetime models based on Shockley-Read-Hall (SRH), radiative, and Auger recombination processes to the temperature and excess carrier density dependent data. The minority carrier (MC), radiative, and Auger lifetimes were observed to generally increase with increasing antimony content and decreasing layer thickness for the unintentionally doped T2SLs. The MC lifetime is limited by SRH processes at temperatures below 200 K in the unintentionally doped T2SLs. The extracted SRH defect energy levels were found to be near mid-bandgap. Additionally, it is observed that the MC lifetime is limited by Auger recombination in the intentionally doped T2SLs with doping levels greater than n ~1016 cm-3.

More Details

McMillan-Rowell like oscillations in a superconductor-InAs/GaSb-superconductor junction

Applied Physics Letters

Shi, Xiaoyan S.; Yu, Wenlong; Hawkins, Samuel D.; Klem, John F.; Pan, Wei P.

We have fabricated a superconductor (Ta)-InAs/GaSb bilayer-superconductor (Ta) junction device that has a long mean free path and can preserve the wavelike properties of particles (electrons and holes) inside the junction. Differential conductance measurements were carried out at low temperatures in this device, and McMillan-Rowell like oscillations (MROs) were observed. Surprisingly, a much larger Fermi velocity, compared to that from Shubnikov-de Haas oscillations, was obtained from the frequency of MROs. Possible mechanisms are discussed for this discrepancy.

More Details

Monolayer-by-monolayer compositional analysis of InAs/InAsSb superlattices with cross-sectional STM

Journal of Crystal Growth

Wood, M.R.; Kanedy, K.; Lopez, F.; Weimer, M.; Klem, John F.; Hawkins, Samuel D.; Shaner, Eric A.; Kim, Jin K.

We use cross-sectional scanning tunneling microscopy (STM) to reconstruct the monolayer-by-monolayer composition profile across a representative subset of MBE-grown InAs/InAsSb superlattice layers and find that antimony segregation frustrates the intended compositional discontinuities across both antimonide-on-arsenide and arsenide-on-antimonide heterojunctions. Graded, rather than abrupt, interfaces are formed in either case. We likewise find that the incorporated antimony per superlattice period varies measurably from beginning to end of the multilayer stack. Although the intended antimony discontinuities predict significant discrepancies with respect to the experimentally observed high-resolution x-ray diffraction spectrum, dynamical simulations based on the STM-derived profiles provide an excellent quantitative match to all important aspects of the x-ray data.

More Details

Intensity- and Temperature-Dependent Carrier Recombination in InAs/InAs1-x S bx Type-II Superlattices

Physical Review Applied

Olson, B.V.; Kadlec, Emil A.; Kim, Jin K.; Klem, John F.; Hawkins, Samuel D.; Shaner, Eric A.; Flatté, M.E.

Time-resolved measurements of carrier recombination are reported for a midwave infrared InAs/InAs0.66Sb0.34 type-II superlattice (T2SL) as a function of pump intensity and sample temperature. By including the T2SL doping level in the analysis, the Shockley-Read-Hall (SRH), radiative, and Auger recombination components of the carrier lifetime are uniquely distinguished at each temperature. SRH is the limiting recombination mechanism for excess carrier densities less than the doping level (the low-injection regime) and temperatures less than 175 K. A SRH defect energy of 95 meV, either below the T2SL conduction-band edge or above the T2SL valence-band edge, is identified. Auger recombination limits the carrier lifetimes for excess carrier densities greater than the doping level (the high-injection regime) for all temperatures tested. Additionally, at temperatures greater than 225 K, Auger recombination also limits the low-injection carrier lifetime due to the onset of the intrinsic temperature range and large intrinsic carrier densities. Radiative recombination is found to not have a significant contribution to the total lifetime for all temperatures and injection regimes, with the data implying a photon recycling factor of 15. Using the measured lifetime data, diffusion currents are calculated and compared to calculated Hg1-xCdxTe dark current, indicating that the T2SL can have a lower dark current with mitigation of the SRH defect states. These results illustrate the potential for InAs/InAs1-xSbx T2SLs as absorbers in infrared photodetectors.

More Details

Superconducting proximity effect in inverted InAs/GaSb quantum well structures with Ta electrodes

Applied Physics Letters

Yu, Wenlong; Jiang, Yuxuan; Huan, Chao; Chen, Xunchi; Jiang, Zhigang; Hawkins, Samuel D.; Klem, John F.; Pan, Wei P.

We present our recent electronic transport results in top-gated InAs/GaSb quantum well hybrid structures with superconducting Ta electrodes. We show that the transport across the InAs-Ta junction depends largely on the interfacial transparency, exhibiting distinct zero-bias behavior. For a relatively resistive interface, a broad conductance peak is observed at zero bias. When a transparent InAs-Ta interface is achieved, a zero-bias conductance dip appears with two coherent-peak-like features forming at bias voltages corresponding to the superconducting gap of Ta. The conductance spectra of the transparent InAs-Ta junction at different gate voltages can be fit well using the standard Blonder-Tinkham-Klapwijk theory.

More Details

Search for Majorana fermions in topological superconductors

Pan, Wei P.; Shi, Xiaoyan S.; Hawkins, Samuel D.; Klem, John F.

The goal of this project is to search for Majorana fermions (a new quantum particle) in a topological superconductor (a new quantum matter achieved in a topological insulator proximitized by an s-wave superconductor). Majorana fermions (MFs) are electron-like particles that are their own anti-particles. MFs are shown to obey non-Abelian statistics and, thus, can be harnessed to make a fault-resistant topological quantum computer. With the arrival of topological insulators, novel schemes to create MFs have been proposed in hybrid systems by combining a topological insulator with a conventional superconductor. In this LDRD project, we will follow the theoretical proposals to search for MFs in one-dimensional (1D) topological superconductors. 1D topological superconductor will be created inside of a quantum point contact (with the metal pinch-off gates made of conventional s-wave superconductors such as niobium) in a two-dimensional topological insulator (such as inverted type-II InAs/GaSb heterostructure).

More Details
Results 26–50 of 58
Results 26–50 of 58