Publications

Results 1–25 of 48
Skip to search filters

Visco-TTI-elastic FWI using discontinuous galerkin

SEG Technical Program Expanded Abstracts

Ober, Curtis C.; Smith, Thomas M.; Overfelt, James R.; Collis, Samuel S.; von Winckel, Gregory J.; van Bloemen Waanders, Bart G.; Downey, Nathan J.; Mitchell, Scott A.; Bond, Stephen D.; Aldridge, David F.; Krebs, Jerome R.

The need to better represent the material properties within the earth's interior has driven the development of higherfidelity physics, e.g., visco-tilted-transversely-isotropic (visco- TTI) elastic media and material interfaces, such as the ocean bottom and salt boundaries. This is especially true for full waveform inversion (FWI), where one would like to reproduce the real-world effects and invert on unprocessed raw data. Here we present a numerical formulation using a Discontinuous Galerkin (DG) finite-element (FE) method, which incorporates the desired high-fidelity physics and material interfaces. To offset the additional costs of this material representation, we include a variety of techniques (e.g., non-conformal meshing, and local polynomial refinement), which reduce the overall costs with little effect on the solution accuracy.

More Details

Computer Science Research Institute (CSRI) Summer Proceedings 2013

Rajamanickam, Sivasankaran R.; Parks, Michael L.; Collis, Samuel S.

The Computer Science Research Institute (CSRI) brings university faculty and students to Sandia National Laboratories for focused collaborative research on computer science, computational science, and mathematics problems that are critical to the mission of the laboratories, the Department of Energy, and the United States. The CSRI provides a mechanism by which university researchers learn about and impact national— and global—scale problems while simultaneously bringing new ideas from the academic research community to bear on these important problems. A key component of CSRI programs over the last decade has been an active and productive summer program where students from around the country conduct internships at CSRI. Each student is paired with a Sandia staff member who serves as technical advisor and mentor. The goals of the summer program are to expose the students to research in mathematical and computer sciences at Sandia and to conduct a meaningful and impactful summer research project with their Sandia mentor. Every effort is made to align summer projects with the student's research objectives and all work is coordinated with the ongoing research activities of the Sandia mentor in alignment with Sandia technical thrusts. For the 2013 CSRI Proceedings, research articles have been organized into the following broad technical focus areas — Computational Mathematics and Algorithms, Combinatorial Algorithms and Visualization, Advanced Architectures and Systems Software, Computational Applications — which are well aligned with Sandia's strategic thrusts in computer and information sciences.

More Details

A discontinuous Galerkin method for gravity-driven viscous fingering instabilities in porous media

Journal of Computational Physics

Scovazzi, Guglielmo S.; Collis, Samuel S.; Gerstenberger, Axel G.

We present a new approach to the simulation of gravity-driven viscous fingering instabilities in porous media flow. These instabilities play a very important role during carbon sequestration processes in brine aquifers. Our approach is based on a nonlinear implementation of the discontinuous Galerkin method, and possesses a number of key features. First, the method developed is inherently high order, and is therefore well suited to study unstable flow mechanisms. Secondly, it maintains high-order accuracy on completely unstructured meshes. The combination of these two features makes it a very appealing strategy in simulating the challenging flow patterns and very complex geometries of actual reservoirs and aquifers. This article includes an extensive set of verification studies on the stability and accuracy of the method, and also features a number of computations with unstructured grids and non-standard geometries.

More Details

A brief history of Sandia National Laboratories and the Department of Energy%3CU%2B2019%3Es Office of Science : interplay between science, technology, and mission

Tsao, Jeffrey Y.; Simmons, J.A.; Collis, Samuel S.; McIlroy, Andrew M.

In 1957, Sandia National Laboratories (Sandia) initiated its first programs in fundamental science, in support of its primary nuclear weapons mission. In 1974, Sandia initiated programs in fundamental science supported by the Department of Energy's Office of Science (DOE-SC). These latter programs have grown to the point where, today in 2011, support of Sandia's programs in fundamental science is dominated by that Office. In comparison with Sandia's programs in technology and mission applications, however, Sandia's programs in fundamental science are small. Hence, Sandia's fundamental science has been strongly influenced by close interactions with technology and mission applications. In many instances, these interactions have been of great mutual benefit, with synergies akin to a positive 'Casimir's spiral' of progress. In this report, we review the history of Sandia's fundamental science programs supported by the Office of Science. We present: (a) a technical and budgetary snapshot of Sandia's current programs supported by the various suboffices within DOE-SC; (b) statistics of highly-cited articles supported by DOE-SC; (c) four case studies (ion-solid interactions, combustion science, compound semiconductors, advanced computing) with an emphasis on mutually beneficial interactions between science, technology, and mission; and (d) appendices with key memos and reminiscences related to fundamental science at Sandia.

More Details
Results 1–25 of 48
Results 1–25 of 48