Publications

Results 1–50 of 194
Skip to search filters

A Method of Moments Wide Band Adaptive Rational Interpolation Method for High-Quality Factor Resonant Cavities

IEEE Transactions on Antennas and Propagation

Yuan, Hao B.; Bao, Wen T.; Lee, Chung H.; Zinser, Brian F.; Campione, Salvatore; Lee, Jin F.

A new adaptive rational interpolation method is proposed to obtain the wideband frequency response of a resonant cavity simulated with the method of moments (MoM). This interpolation method uses both the Loewner matrix to construct a rational expression for the solution vector of MoM's matrix system and an error estimator generated by the solution vectors and their derivatives. This error estimator is implemented in the adaptive procedure to gain a minimum set of frequencies and solution vectors required in the interpolation. The resulting set of frequencies and solution vectors is applied to interpolate other system variables, such as shielding effectiveness and input impedance. Numerical results of a slotted cylindrical cavity supporting high-quality factor resonances are presented, showing that the new rational interpolation method is accurate and efficient in interpolating the complicated resonant response of the solution vector functions.

More Details

An All-Dielectric Polaritonic Metasurface with a Giant Nonlinear Optical Response

Nano Letters

Sarma, Raktim S.; Xu, Jiaming X.; de Ceglia, Domenico d.; Carletti, Luca C.; Campione, Salvatore; Klem, John F.; Sinclair, Michael B.; Belkin, Mikhail B.; Brener, Igal B.

Enhancing the efficiency of second-harmonic generation using all-dielectric metasurfaces to date has mostly focused on electromagnetic engineering of optical modes in the meta-atom. Further advances in nonlinear conversion efficiencies can be gained by engineering the material nonlinearities at the nanoscale, however this cannot be achieved using conventional materials. Semiconductor heterostructures that support resonant nonlinearities using quantum engineered intersubband transitions can provide this new degree of freedom. By simultaneously optimizing the heterostructures and meta-atoms, we experimentally realize an all-dielectric polaritonic metasurface with a maximum second-harmonic generation power conversion factor of 0.5 mW/W2 and power conversion efficiencies of 0.015% at nominal pump intensities of 11 kW/cm2. These conversion efficiencies are higher than the record values reported to date in all-dielectric nonlinear metasurfaces but with 3 orders of magnitude lower pump power. Our results therefore open a new direction for designing efficient nonlinear all-dielectric metasurfaces for new classical and quantum light sources.

More Details

Penetration Bounds For Azimuthal Slot On Infinite Cylinder With Finite Length Backing Cylindrical Cavity

Warne, Larry K.; Campione, Salvatore; Martin, Luis S.; Pack, Alden R.; Langston, William L.; Zinser, Brian &.

We examine coupling into azimuthal slots on an infinite cylinder with a infinite length interior cavity operating both at the fundamental cavity modal frequencies, with small slots and a resonant slot, as well as higher frequencies. The coupling model considers both radiation on an infinite cylindrical exterior as well as a half space approximation. Bounding calculations based on maximum slot power reception and interior power balance are also discussed in detail and compared with the prior calculations. For higher frequencies limitations on matching are imposed by restricting the loads ability to shift the slot operation to the nearest slot resonance; this is done in combination with maximizing the power reception as a function of angle of incidence. Finally, slot power mismatch based on limited cavity load quality factor is considered below the first slot resonance.

More Details

Penetration through Slots in Overmoded Cavities

IEEE Transactions on Electromagnetic Compatibility

Campione, Salvatore; Warne, Larry K.

A resonant cavity undergoes three distinct behaviors with increasing frequency: 1) fundamental modes, localized in frequency with well defined modal distribution; 2) undermoded region, where modes are still separated, but are sufficiently perturbed by small imperfections that their spectral positions (and distributions) are statistical in nature; and 3) overmoded region, where modes overlap, field distributions follow stochastic distributions, and the slot acts as if in free space. Understanding the penetration through slots in the overmoded region is of great interest, and is the focus of this article. Since full-wave solvers may not be able to provide a timely answer for very high frequencies due to a lack of memory and/or computation resources, we develop bounding methods to estimate worst-case average and maximum fields within the cavity. After discussing the bounding formulation, we compare its results to full-wave simulations at the first, second, and third resonance supported by the slot in the case of a cylindrical cavity. Note that the bounding formulation indicates that results are nearly independent of cavity shape: only the cavity volume, frequency, and cavity quality factor affect the overmoded region, making this formulation a powerful tool to assess electromagnetic interference and electromagnetic compatibility effects within cavities.

More Details

Developing Uncertainty Quantification Strategies in Electromagnetic Problems Involving Highly Resonant Cavities

Journal of Verification, Validation and Uncertainty Quantification

Campione, Salvatore; Stephens, John A.; Martin, Nevin; Eckert, Aubrey C.; Warne, Larry K.; Huerta, Jose G.; Pfeiffer, Robert A.; Jones, Adam J.

High-quality factor resonant cavities are challenging structures to model in electromagnetics owing to their large sensitivity to minute parameter changes. Therefore, uncertainty quantification (UQ) strategies are pivotal to understanding key parameters affecting the cavity response. We discuss here some of these strategies focusing on shielding effectiveness (SE) properties of a canonical slotted cylindrical cavity that will be used to develop credibility evidence in support of predictions made using computational simulations for this application.

More Details

Characterization and integration of the singular test integrals in the method‐of‐moments implementation of the electric‐field integral equation

Engineering Analysis with Boundary Elements

Freno, Brian A.; Johnson, William Arthur.; Zinser, Brian; Wilton, Donald R.; Vipiana, Francesca; Campione, Salvatore

In this paper, we characterize the logarithmic singularities arising in the method of moments from the Green's function in integrals over the test domain, and we use two approaches for designing geometrically symmetric quadrature rules to integrate these singular integrands. These rules exhibit better convergence properties than quadrature rules for polynomials and, in general, lead to better accuracy with a lower number of quadrature points. We demonstrate their effectiveness for several examples encountered in both the scalar and vector potentials of the electric-field integral equation (singular, near-singular, and far interactions) as compared to the commonly employed polynomial scheme and the double Ma–Rokhlin–Wandzura (DMRW) rules, whose sample points are located asymmetrically within triangles.

More Details

Strong Coupling in All-Dielectric Intersubband Polaritonic Metasurfaces

Nano Letters

Sarma, Raktim S.; Nookala, Nishant; Reilly, Kevin J.; Liu, Sheng; De Ceglia, Domenico; Carletti, Luca; Goldflam, Michael G.; Campione, Salvatore; Sapkota, Keshab R.; Green, Huck; Wang, George T.; Klem, John F.; Sinclair, Michael B.; Belkin, Mikhail A.; Brener, Igal B.

Mie-resonant dielectric metasurfaces are excellent candidates for both fundamental studies related to light-matter interactions and for numerous applications ranging from holography to sensing to nonlinear optics. To date, however, most applications using Mie metasurfaces utilize only weak light-matter interaction. Here, we go beyond the weak coupling regime and demonstrate for the first time strong polaritonic coupling between Mie photonic modes and intersubband (ISB) transitions in semiconductor heterostructures. Furthermore, along with demonstrating ISB polaritons with Rabi splitting as large as 10%, we also demonstrate the ability to tailor the strength of strong coupling by engineering either the semiconductor heterostructure or the photonic mode of the resonators. Unlike previous plasmonic-based works, our new all-dielectric metasurface approach to generate ISB polaritons is free from ohmic losses and has high optical damage thresholds, thereby making it ideal for creating novel and compact mid-infrared light sources based on nonlinear optics.

More Details

Penetration through slots in cylindrical cavities with cavity modes overlapping with the first slot resonance

Electromagnetics

Campione, Salvatore; Warne, Larry K.; Langston, William L.; Gutierrez, Roy K.; Hicks, Jeorge W.; Reines, Isak C.; Pfeiffer, Robert A.; Himbele, John J.; Williams, Jeffery T.

We analyze the coupling into a slotted cylindrical cavity operating at fundamental cavity modal frequencies overlapping with the slot’s first resonance frequency through an unmatched formulation that accounts for the slot’s absorption and radiation processes. The model is validated through full-wave simulations and experimental data. We then couple the unmatched formulation to a perturbation theory model to investigate an absorber within the cavity to reduce the interior field strength, also validated with full-wave simulations and experiments. These models are pivotal to understanding the physical processes involved in the electromagnetic penetration through slots, and may constitute design tools to mitigate electromagnetic interference effects within cavities.

More Details

Electromagnetic Pulse – Resilient Electric Grid for National Security: Research Program Executive Summary

Guttromson, Ross G.; Lawton, Craig R.; Halligan, Matthew H.; Huber, Dale L.; Flicker, Jack D.; Hoffman, Matthew J.; Bowman, Tyler B.; Campione, Salvatore; Clem, Paul G.; Fiero, Andrew F.; Hansen, Clifford H.; Llanes, Rodrigo E.; Pfeiffer, Robert A.; Pierre, Brian J.; Martin, Luis S.; Sanabria, David E.; Schiek, Richard S.; Slobodyan, Oleksiy S.; Warne, Larry K.

Sandia National Laboratories sponsored a three-year internally funded Laboratory Directed Research and Development (LDRD) effort to investigate the vulnerabilities and mitigations of a high-altitude electromagnetic pulse (HEMP) on the electric power grid. The research was focused on understanding the vulnerabilities and potential mitigations for components and systems at the high voltage transmission level. Results from the research included a broad array of subtopics, covered in twenty-three reports and papers, and which are highlighted in this executive summary report. These subtopics include high altitude electromagnetic pulse (HEMP) characterization, HEMP coupling analysis, system-wide effects, and mitigating technologies.

More Details

Penetration through Slots in Cylindrical Cavities Operating at Fundamental Cavity Modes

IEEE Transactions on Electromagnetic Compatibility

Campione, Salvatore; Warne, Larry K.; Langston, William L.; Pfeiffer, Robert A.; Martin, Nevin S.; Williams, Jeffery T.; Gutierrez, Roy K.; Reines, Isak C.; Huerta, Jose G.; Dang, Vinh Q.

In this article, we examine the coupling into an electrically short azimuthal slot on a cylindrical cavity operating at fundamental cavity modal frequencies. We first develop a matched bound formulation through which we can gather information for maximum achievable levels of interior cavity fields. Actual field levels are below this matched bound; therefore, we also develop an unmatched formulation for frequencies below the slot resonance to achieve a better insight on the physics of this coupling. Good agreement is observed between the unmatched formulation, full-wave simulations, and experimental data, providing a validation of our analytical models. We then extend the unmatched formulation to treat an array of slots, found again in good agreement with full-wave simulations. These analytical models can be used to investigate ways to mitigate electromagnetic interference and electromagnetic compatibility effects within cavities.

More Details

Diffusion Models to Construct a First Principles Multipole-Based Cable Braid Model for Conducting Wires in the Time Domain

Campione, Salvatore; Warne, Larry K.

We describe here diffusion models apt to construct a multipole-based, cable braid time domain model for conducting wires. Implementation details of both a ladder network valid for time-domain signals with all frequency content and an approximate single-stage circuit valid for low-frequency dominated time signals (such as electromagnetic pulses) are reported. This time domain model can be leveraged to treat system-generated electromagnetic pulse events, as well as used to further confirm the correctness of the multipole-based, cable braid frequency domain model.

More Details

Nanoantenna-Enhanced Resonant Detectors for Improved Infrared Detector Performance

Goldflam, Michael G.; Anderson, Evan M.; Fortune, Torben R.; Klem, John F.; Hawkins, Samuel D.; Davids, Paul D.; Campione, Salvatore; Pung, Aaron J.; Webster, Preston T.; Weiner, Phillip H.; Finnegan, Patrick S.; Wendt, Joel R.; Wood, Michael G.; Haines, Chris H.; Coon, Wesley T.; Olesberg, Jonathon T.; Shaner, Eric A.; Kadlec, Clark N.; Beechem, Thomas E.; Sinclair, Michael B.; Tauke-Pedretti, Anna; Kim, Jin K.; Peters, D.W.

Abstract not provided.

An Approximate Direct Inverse as a Preconditioner for Ill-conditioned Problems

2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, IEEECONF 2020 - Proceedings

Lee, Chung H.; Lee, Jin F.; Langston, William L.; Zinser, Brian; Dang, Vinh Q.; Huang, Andy H.; Campione, Salvatore

This paper implemented an approximate direct inverse for the surface integral equation including multilevel fast-multipole method. We apply it as a preconditioner to two examples suffering convergence problem with an iterative solver.

More Details

Experimental Evidence of the Lorentz-Like Effective Medium Resonance in Semiconductor Hyperbolic Metamaterials Using Strong Coupling to Plasmonic Metasurfaces

IEEE Transactions on Antennas and Propagation

Campione, Salvatore; Klem, John F.; Liu, Sheng; Montano, Ines; Sinclair, Michael B.; Luk, Ting S.

The Lorentz-like effective medium resonance (LEMR) exhibited by the longitudinal effective permittivity of semiconductor hyperbolic metamaterials (SHMs) has been known for some time. However, direct observation of this resonance proved to be difficult. Herein, we experimentally demonstrate its existence by strongly coupling SHMs to plasmonic metasurfaces. We consider four strong coupling implementations of SHMs that exhibit different LEMR absorption profiles (both in frequency and in strength) to validate our approach.

More Details

Broadband, High-Speed, and Large-Amplitude Dynamic Optical Switching with Yttrium-Doped Cadmium Oxide

Advanced Functional Materials

Saha, Soham; Diroll, Benjamin T.; Shank, Joshua S.; Kudyshev, Zhaxylyk; Dutta, Aveek; Chowdhury, Sarah N.; Luk, Ting S.; Campione, Salvatore; Schaller, Richard D.; Shalaev, Vladimir M.; Boltasseva, Alexandra; Wood, Michael G.

Transparent conducting oxides, such as doped indium oxide, zinc oxide, and cadmium oxide (CdO), have recently attracted attention as tailorable materials for applications in nanophotonic and plasmonic devices such as low-loss modulators and all-optical switches due to their tunable optical properties, fast optical response, and low losses. In this work, optically induced extraordinarily large reflection changes (up to 135%) are demonstrated in bulk CdO films in the mid-infrared wavelength range close to the epsilon near zero (ENZ) point. To develop a better understanding of how doping level affects the static and dynamic optical properties of CdO, the evolution of the optical properties with yttrium (Y) doping is investigated. An increase in the metallicity and a blueshift of the ENZ point with increasing Y-concentrations is observed. Broadband all-optical switching from near-infrared to mid-infrared wavelengths is demonstrated. The major photoexcited carrier relaxation mechanisms in CdO are identified and it is shown that the relaxation times can be significantly reduced by increasing the dopant concentration in the film. This work could pave the way to practical dynamic and passive optical and plasmonic devices with doped CdO spanning wavelengths from the ultraviolet to the mid-infrared region.

More Details

Penetration through slots in cylindrical cavities operating at fundamental cavity modes in the presence of electromagnetic absorbers

Progress In Electromagnetics Research M

Campione, Salvatore; Warne, Larry K.; Reines, Isak C.; Gutierrez, Roy K.; Williams, Jeffery T.

Placing microwave absorbing materials into a high-quality factor resonant cavity may in general reduce the large interior electromagnetic fields excited under external illumination. In this paper, we aim to combine two analytical models we previously developed: 1) an unmatched formulation for frequencies below the slot resonance to model shielding effectiveness versus frequency; and 2) a perturbation model approach to estimate the quality factor of cavities in the presence of absorbers. The resulting model realizes a toolkit with which design guidelines of the absorber’s properties and location can be optimized over a frequency band. Analytic predictions of shielding effectiveness for three transverse magnetic modes for various locations of the absorber placed on the inside cavity wall show good agreement with both full-wave simulations and experiments, and validate the proposed model. This analysis opens new avenues for specialized ways to mitigate harmful fields within cavities.

More Details

Multipole-based cable braid electromagnetic penetration model: Magnetic penetration case

Progress In Electromagnetics Research C

Campione, Salvatore; Warne, Larry K.; Langston, William L.

The goal of this paper is to present, for the first time, calculations of the magnetic penetration case of a first principles multipole-based cable braid electromagnetic penetration model. As a first test case, a one-dimensional array of perfect electrically conducting wires, for which an analytical solution is known, is investigated: We compare both the self-inductance and the transfer inductance results from our first principles cable braid electromagnetic penetration model to those obtained using the analytical solution. These results are found in good agreement up to a radius to half spacing ratio of about 0.78, demonstrating a robustness needed for many commercial and non-commercial cables. We then analyze a second set of test cases of a square array of wires whose solution is the same as the one-dimensional array result and of a rhomboidal array whose solution can be estimated from Kley’s model. As a final test case, we consider two layers of one-dimensional arrays of wires to investigate porpoising effects analytically. We find good agreement with analytical and Kley’s results for these geometries, verifying our proposed multipole model. Note that only our multipole model accounts for the full dependence on the actual cable geometry which enables us to model more complicated cable geometries.

More Details

Intersubband Polaritonics in Dielectric Metasurfaces

Sarma, Raktim S.; Sarma, Raktim S.; Nookala, Nishant N.; Nookala, Nishant N.; Kevin, Reilly K.; Kevin, Reilly K.; Liu, Sheng L.; Liu, Sheng L.; Domenico, de C.; Domenico, de C.; Goldflam, Michael G.; Goldflam, Michael G.; Luca, Carletti L.; Luca, Carletti L.; Campione, Salvatore; Campione, Salvatore; Klem, John F.; Klem, John F.; Sinclair, Michael B.; Sinclair, Michael B.; Belkin, Mikhail B.; Belkin, Mikhail B.; Brener, Igal B.; Brener, Igal B.

Abstract not provided.

Modeling shielded cables in Xyce based on transmission-line theory

2019 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), USNC-URSI 2019 - Proceedings

Campione, Salvatore; Pung, Aaron J.; Warne, Larry K.; Langston, William L.; Mei, Ting M.

Electromagnetic shields are usually employed to protect cables and other devices; however, these are generally not perfect, and may permit external magnetic and electric fields to penetrate into the interior regions of the cable, inducing unwanted current and voltages. The aim of this paper is to verify a circuit model tool with our previously proposed analytical model [1] for evaluating currents and voltages induced in the inner conductor of braided-shield cables. This circuit model will enable coupling between electromagnetic and circuit simulations.

More Details

Broadband and Efficient Second-Harmonic Generation from a Hybrid Dielectric Metasurface/Semiconductor Quantum-Well Structure

ACS Photonics

Sarma, Raktim; De Ceglia, Domenico; Nookala, Nishant; Vincenti, Maria A.; Campione, Salvatore; Wolf, Omri; Scalora, Michael; Sinclair, Michael B.; Belkin, Mikhail A.; Brener, Igal B.

A prominent nonlinear optical phenomenon that is extensively studied using nanostructured materials is second-harmonic generation (SHG) as it has applications in various fields. Achieving efficient SHG from a nanostructure requires a large second-order nonlinear susceptibility of the material system and large electromagnetic fields. For practical applications, the nanostructures should also have low losses, high damage thresholds, large bandwidths, wavelength scalability, dual mode operation in transmission and reflection, monolithic integrability, and ease of fabrication. While various approaches have demonstrated efficient SHG, to the best of our knowledge, none have demonstrated all these desired qualities simultaneously. Here, we present a hybrid approach for realizing efficient SHG in an ultrathin dielectric-semiconductor nonlinear device with all the above-mentioned desired properties. Our approach uses high quality factor leaky mode resonances in dielectric metasurfaces that are coupled to intersubband transitions of semiconductor quantum wells. Using our device, we demonstrate SHG at pump wavelengths ranging from 8.5 to 11 μm, with a maximum second-harmonic nonlinear conversion factor of 1.1 mW/W2 and maximum second-harmonic conversion efficiency of 2.5 × 10-5 at modest pump intensities of 10 kW/cm2. Our results open a new direction for designing low loss, broadband, and efficient ultrathin nonlinear optical devices.

More Details

Enhancing absorption bandwidth through vertically oriented metamaterials

Applied Sciences (Switzerland)

Pung, Aaron J.; Goldflam, Michael G.; Burckel, David B.; Brener, Igal B.; Sinclair, Michael B.; Campione, Salvatore

Metamaterials research has developed perfect absorbers from microwave to optical frequencies, mainly featuring planar metamaterials, also referred to as metasurfaces. In this study, we investigated vertically oriented metamaterials, which make use of the entire three-dimensional space, as a new avenue to widen the spectral absorption band in the infrared regime between 20 and 40 THz. Vertically oriented metamaterials, such as those simulated in this work, can be experimentally realized through membrane projection lithography, which allows a single unit cell to be decorated with multiple resonators by exploiting the vertical dimension. In particular, we analyzed the cases of a unit cell containing a single vertical split-ring resonator (VSRR), a single planar split-ring resonator (PSRR), and both a VSRR and PSRR to explore intra-cell coupling between resonators. We show that the additional degrees of freedom enabled by placing multiple resonators in a unit cell lead to novel ways of achieving omnidirectional super absorption. Our results provide an innovative approach for controlling and designing engineered nanostructures.

More Details

Modeling and experiments of high-quality factor cavity shielding effectiveness

2019 International Applied Computational Electromagnetics Society Symposium in Miami, ACES-Miami 2019

Campione, Salvatore; Warne, Larry K.; Reines, Isak C.; Williams, Jeffery T.; Gutierrez, Roy K.; Coats, Rebecca S.; Basilio, Lorena I.

In this paper, we investigate the coupling from external electromagnetic (EM) fields to the interior EM fields of a high-quality factor cylindrical cavity through a small perturbing slot. We illustrate the shielding effectiveness versus frequency, highlighting bounds on the penetrant power through the slot. Because internal fields may become larger than external ones, we then introduce a small amount of microwave absorbing materials decorating the slot to improve shielding effectiveness considerably, as shown by both simulations and experiments. Although the cylindrical cavity is used for demonstration purposes in this paper, the conclusions presented here can be leveraged for use with more complex cavity structures.

More Details

High-mobility transparent conducting oxides for compact epsilon-near-zero silicon photonic phase modulators

Optics InfoBase Conference Papers

Wood, Michael G.; Reines, Isak C.; Luk, Ting S.; Serkland, Darwin K.; Campione, Salvatore

We numerically analyze the role of carrier mobility in transparent conducting oxides in epsilon-near-zero phase modulators. High-mobility materials such as cadmium oxide enable compact photonic phase modulators with a modulation figure of merit >29 º/dB.

More Details

Quality factor assessment of finite-size all-dielectric metasurfaces at the magnetic dipole resonance

Nanomaterials and Nanotechnology

Warne, Larry K.; Jorgenson, Roy E.; Campione, Salvatore

Recently there has been a large interest in achieving metasurface resonances with large quality factors. In this article, we examine metasurfaces that comprised a finite number of magnetic dipoles oriented parallel or orthogonal to the plane of the metasurface and determine analytic formulas for their resonances’ quality factors. These conditions are experimentally achievable in finite-size metasurfaces made of dielectric cubic resonators at the magnetic dipole resonance. Our results show that finite metasurfaces made of parallel (to the plane) magnetic dipoles exhibit low quality factor resonances with a quality factor that is independent of the number of resonators. More importantly, finite metasurfaces made of orthogonal (to the plane) magnetic dipoles lead to resonances with large quality factors, which ultimately depend on the number of resonators comprising the metasurface. In particular, by properly modulating the array of dipole moments by having a distribution of resonator polarizabilities, one can potentially increase the quality factor of metasurface resonances even further. These results provide design guidelines to achieve a sought quality factor applicable to any resonator geometry for the development of new devices such as photodetectors, modulators, and sensors.

More Details

Viscoelastic optical nonlocality of low-loss epsilon-near-zero nanofilms

Scientific Reports

De Ceglia, Domenico; Scalora, Michael; Vincenti, Maria A.; Campione, Salvatore; Kelley, Kyle; Runnerstrom, Evan L.; Maria, Jon P.; Keeler, Gordon A.; Luk, Ting S.

Optical nonlocalities are elusive and hardly observable in traditional plasmonic materials like noble and alkali metals. Here we report experimental observation of viscoelastic nonlocalities in the infrared optical response of epsilon-near-zero nanofilms made of low-loss doped cadmium-oxide. The nonlocality is detectable thanks to the low damping rate of conduction electrons and the virtual absence of interband transitions at infrared wavelengths. We describe the motion of conduction electrons using a hydrodynamic model for a viscoelastic fluid, and find excellent agreement with experimental results. The electrons' elasticity blue-shifts the infrared plasmonic resonance associated with the main epsilon-near-zero mode, and triggers the onset of higher-order resonances due to the excitation of electron-pressure modes above the bulk plasma frequency. We also provide evidence of the existence of nonlocal damping, i.e., viscosity, in the motion of optically-excited conduction electrons using a combination of spectroscopic ellipsometry data and predictions based on the viscoelastic hydrodynamic model.

More Details

Semiconductor Hyperbolic Metamaterials at the Quantum Limit

Scientific Reports

Montaño, Inès; Campione, Salvatore; Klem, John F.; Beechem, Thomas E.; Wolf, Omri; Sinclair, Michael B.; Luk, Ting S.

We study semiconductor hyperbolic metamaterials (SHMs) at the quantum limit experimentally using spectroscopic ellipsometry as well as theoretically using a new microscopic theory. The theory is a combination of microscopic density matrix approach for the material response and Green’s function approach for the propagating electric field. Our approach predicts absorptivity of the full multilayer system and for the first time allows the prediction of in-plane and out-of-plane dielectric functions for every individual layer constructing the SHM as well as effective dielectric functions that can be used to describe a homogenized SHM.

More Details

A metasurface optical modulator using voltage-controlled population of quantum well states

Applied Physics Letters

Sarma, Raktim S.; Campione, Salvatore; Goldflam, Michael G.; Shank, Joshua S.; Noh, Jinhyun; Le, Loan T.; Lange, Michael D.; Ye, Peide D.; Wendt, J.R.; Ruiz, Isaac R.; Howell, Stephen W.; Sinclair, Michael B.; Wanke, Michael W.; Brener, Igal B.

The ability to control the light-matter interaction with an external stimulus is a very active area of research since it creates exciting new opportunities for designing optoelectronic devices. Recently, plasmonic metasurfaces have proven to be suitable candidates for achieving a strong light-matter interaction with various types of optical transitions, including intersubband transitions (ISTs) in semiconductor quantum wells (QWs). For voltage modulation of the light-matter interaction, plasmonic metasurfaces coupled to ISTs offer unique advantages since the parameters determining the strength of the interaction can be independently engineered. In this work, we report a proof-of-concept demonstration of a new approach to voltage-tune the coupling between ISTs in QWs and a plasmonic metasurface. In contrast to previous approaches, the IST strength is here modified via control of the electron populations in QWs located in the near field of the metasurface. By turning on and off the ISTs in the semiconductor QWs, we observe a modulation of the optical response of the IST coupled metasurface due to modulation of the coupled light-matter states. Because of the electrostatic design, our device exhibits an extremely low leakage current of ∼6 pA at a maximum operating bias of +1 V and therefore very low power dissipation. Our approach provides a new direction for designing voltage-tunable metasurface-based optical modulators.

More Details
Results 1–50 of 194
Results 1–50 of 194