Publications

18 Results
Skip to search filters

A Tunable Unidirectional Source for GUSTO's Local Oscillator at 4.74 THz

IEEE Transactions on Terahertz Science and Technology

Khalatpour, Ali; Paulsen, Andrew K.; Addamane, Sadhvikas J.; Deimert, Chris; Reno, John L.; Wasilewski, Zbig R.; Hu, Qing

The Galactic/Extra Ultra-Long-Duration Balloon Spectroscopic-Stratospheric Terahertz Observatory (GUSTO) is a NASA balloon-borne project and is scheduled for launch in late 2022. The balloon will carry a spectroscopic telescope that will detect three brightest emission lines from the interstellar medium. GUSTO measurements will shed light on the life cycle of the gases in the Milky Way and Large Magellanic Cloud. In this article, we will discuss the details of a quantum cascade laser used in the local oscillator for detecting the oxygen line at 4.74 THz.

More Details

Thin THz QCL active regions for improved continuous-wave operating temperature

AIP Advances

Curwen, Christopher A.; Addamane, Sadhvikas J.; Reno, John L.; Shahili, Mohammad; Kawamura, Jonathan H.; Briggs, Ryan M.; Karasik, Boris S.; Williams, Benjamin S.

We compare the performance of 10 and 5 μm thick metal-metal waveguide terahertz quantum-cascade laser ridges operating around 2.7 THz and based on a 4-well phonon depopulation active region design. Thanks to reduced heat dissipation and lower thermal resistance, the 5 μm thick material shows an 18 K increase in continuous wave operating temperature compared to the 10 μm material, despite a lower maximum pulsed-mode operating temperature and a larger input power density. A maximum continuous wave operating temperature of 129 K is achieved using the 5 μm thick material and a 15 μm wide ridge waveguide, which lased up to 155 K in the pulsed mode. The use of thin active regions is likely to become increasingly important to address the increasing input power density of emerging 2- and 3-well active region designs that show the highest pulsed operating temperatures.

More Details

THz time-domain characterization of amplifying quantum-cascade metasurface

Applied Physics Letters

Shen, Yue; Kim, Anthony D.; Shahili, Mohammad; Curwen, Christopher A.; Addamane, Sadhvikas J.; Reno, John L.; Williams, Benjamin S.

An amplifying quantum-cascade (QC) metasurface, the key component of the QC vertical-external-cavity surface-emitting-laser (VECSEL), is studied as a function of injected current density using reflection-mode terahertz time domain spectroscopy. Nearly perfect absorption is measured at zero bias, which is associated with the transition from the weak to strong coupling condition between the metasurface resonance and an intersubband transition within the QC material. An increase in reflectance is observed as the device is biased, both due to reduction in intersubband loss and the presence of intersubband gain. Significant phase modulation associated with the metasurface resonance is observed via electrical control, which may be useful for electrical tuning of QC-VECSEL. These results provide insight into the interaction between the intersubband QC-gain material and the metasurface and modify the design rules for QC-VECSELs for both biased and unbiased regions.

More Details

Tunable quantum-cascade VECSEL operating at 1.9 THz

Optics Express

WU, YU; SHEN, YUE; Addamane, Sadhvikas J.; RENO, JOHN L.; WILLIAMS, BENJAMIN S.

We report a terahertz quantum-cascade vertical-external-cavity surface-emitting laser (QC-VECSEL) emitting around 1.9 THz with up to 10% continuous fractional frequency tuning of a single laser mode. The device shows lasing operation in pulsed mode up to 102K in a high-quality beam, with the maximum output power of 37mW and slope efficiency of 295mW/A at 77 K. Challenges for up-scaling the operating wavelength in QC metasurface VECSELs are identified.

More Details

Novel In-situ Patterning Technique to Fabricate Single Quantum Dots for Quantum Photonics

Addamane, Sadhvikas J.

Photon sources able to emit single or entangled photon pairs are key components in quantum information systems. Semiconductor quantum dots (QDs) are promising candidates due to their high efficiencies and ease of integration with other photonic or electronic components. State-of-the-art QDs, however, are limited to certain emission wavelengths and specific applications due to material choice constraints and their randomness in shape/size. This project is focused on developing a novel in-situ patterning technique to realize QDs with a broad emission range, shape/size control and the ability to emit single/entangled photons. Our approach has two key elements: (1) In-situ patterning via arsenic-induced nanovoid etching on antimonide surfaces and (2) In-filling of nanovoids to form QDs. By closely controlling the experimental conditions, it is shown that this technique can be used to realize III-V QDs in As2- etched nanovoids on a GaSb surface. The exposure to As2 in terms of substrate temperature, time and flux is found to have a significant impact on the process variables such as nanovoid depth, QD dimensions etc. An in-depth analysis of the etch mechanism reveals that by controlling the As2 exposure, uniform 3-dimensional nanostructures with varying areal densities can be obtained without an in-filling step. Preliminary optical characterization of these nanostructures shows that these QDs may be relevant for realizing emitters in the telecom wavelength range.

More Details

Multi-mode lasing in terahertz metasurface quantum-cascade VECSELs

Applied Physics Letters

Wu, Yu; Addamane, Sadhvikas J.; Reno, John L.; Williams, Benjamin S.

To date, terahertz quantum-cascade vertical-external-cavity surface-emitting lasers (QC-VECSELs) have tended to oscillate in only one or two lasing modes at a time. This is due to the fact that the interaction between all of the longitudinal external cavity modes and the QC gain material is mediated through a single metasurface resonance, whose spatial overlap changes little with frequency; this suppresses spatial-hole-burning induced multi-mode operation. In this Letter, a VECSEL external cavity is demonstrated using an output coupler based upon a high-resistivity silicon etalon, which presents a periodic reflectance spectrum that is nearly matched with the external cavity mode spectrum. As the cavity length is varied, a systematic transition between a single/double-mode lasing regime and a multi-mode lasing regime is realized due to the Vernier effect. Up to nine modes lasing simultaneously with a free-spectral-range of approximately 21 GHz is demonstrated. This result provides a path toward the multi-mode operation necessary for eventual frequency comb operation.

More Details

Highly efficient terahertz photoconductive metasurface detectors operating at microwatt-level gate powers

Optics Letters

Hale, Lucy L.; Harris, C.T.; Luk, Ting S.; Addamane, Sadhvikas J.; Reno, J.L.; Brener, Igal B.

Despite their wide use in terahertz (THz) research and technology, the application spectra of photoconductive antenna (PCA) THz detectors are severely limited due to the relatively high optical gating power requirement. This originates from poor conversion efficiency of optical gate beam photons to photocurrent in materials with subpicosecond carrier lifetimes. Here we show that using an ultra-thin (160 nm), perfectly absorbing low-temperature grown GaAs metasurface as the photoconductive channel drastically improves the efficiency of THz PCA detectors. This is achieved through perfect absorption of the gate beam in a significantly reduced photoconductive volume, enabled by the metasurface. This Letter demonstrates that sensitive THz PCA detection is possible using optical gate powers as low as 5 μW-three orders of magnitude lower than gating powers used for conventionalPCAdetectors.We show that significantly higher optical gate powers are not necessary for optimal operation, as they do not improve the sensitivity to the THz field. This class of efficient PCA THz detectors opens doors for THz applications with low gate power requirements.

More Details

Epitaxial Regrowth and Hole Shape Engineering for Photonic Crystal Surface Emitting Lasers (PCSELs)

Journal of Crystal Growth

Reilly, Kevin J.; Kalapala, Akhil; Yeom, Seuongwon; Addamane, Sadhvikas J.; Renteria, Emma; Zhou, Weidong; Balakrishnan, Ganesh

In the present research, epitaxial regrowth by molecular beam epitaxy (MBE) is investigated as a fabrication process for void-semiconductor photonic crystal (PhC) surface emitting lasers (PCSELs). The PhC is patterned by electron beam lithography (EBL) and inductively coupled plasma (ICP) etch and is subsequently regrown by molecular beam epitaxy to embed a series of voids in bulk semiconductor. Experiments are conducted to investigate the effects of regrowth on air-hole morphology. The resulting voids have a distinct teardrop shape with the radius and depth of the etched hole playing a very critical role in the final regrown void's dimensions. We demonstrate that specific hole diameters can encourage deposition to the bottom of the voids or to their sidewalls, allowing us to engineer the shape of the void more precisely as is required by the PCSEL design. A 980 nm InGaAs quantum well laser structure is optimized for low threshold lasing at the design wavelength and full device structures are patterned and regrown. An optically pumped PCSEL is demonstrated from this process.

More Details

All-Dielectric Metasurfaces: Optical Nonlinearities and Emission Control

2019 IEEE Photonics Conference, IPC 2019 - Proceedings

Vabishchevich, Polina V.; Sharma, Andrei; Sinclair, Michael B.; Brener, Igal B.; Peake, Gregory M.; Karl, Nicholas J.; Balakrishnan, Ganesh; Staude, Isabelle; Vaskin, Aleksandr; Liu, Sheng; Reno, J.L.; Keeler, Gordon A.; Addamane, Sadhvikas J.

In this work we show our results on the harmonic generation and nonlinear frequency mixing enhanced by Mie modes in GaAs metasurfaces. Moreover, we show enhancement and directionality control of the quantum dot emission embedded in the metasurface.

More Details
18 Results
18 Results