Publications

Results 26–31 of 31
Skip to search filters

Silicon Three-Dimensional Photonic Crystal and its Applications

Lin, Shawn-Yu L.; Fleming, J.G.; Lyo, S.K.

Photonic crystals are periodically engineered ''materials'' which are the photonic analogues of electronic crystals. Much like electronic crystal, photonic crystal materials can have a variety of crystal symmetries, such as simple-cubic, closed-packed, Wurtzite and diamond-like crystals. These structures were first proposed in late 1980's. However, due mainly to fabrication difficulties, working photonic crystals in the near-infrared and visible wavelengths are only just emerging. In this article, we review the construction of two- and three-dimensional photonic crystals of different symmetries at infrared and optical wavelengths using advanced semiconductor processing. We further demonstrate that this process lends itself to the creation of line defects (linear waveguides) and point defects (micro-cavities), which are the most basic building blocks for optical signal processing, filtering and routing.

More Details

Multisublevel Magnetoquantum Conductance in Single and Coupled Double Quantum Wires

Physical Review B

Lyo, S.K.

We study the ballistic and diffusive magnetoquantum transport using a typical quantum point contact geometry for single and tunnel-coupled double wires that are wide (less than or similar to1 mum) in one perpendicular direction with densely populated sublevels and extremely confined in the other perpendicular (i.e., growth) direction. A general analytic solution to the Boltzmann equation is presented for multisublevel elastic scattering at low temperatures. The solution is employed to study interesting magnetic-field dependent behavior of the conductance such as a large enhancement and quantum oscillations of the conductance for various structures and field orientations. These phenomena originate from the following field-induced properties: magnetic confinement, displacement of the initial- and final-state wave functions for scattering, variation of the Fermi velocities, mass enhancement, depopulation of the sublevels and anticrossing (in double quantum wires). The magnetoconductance is strikingly different in long diffusive (or rough. dirty) wires from the quantized conductance in short ballistic (or clean) wires. Numerical results obtained for the rectangular confinement potentials in the growth direction are satisfactorily interpreted in terms of the analytic solutions based on harmonic confinement potentials. Some of the predicted features of the field-dependent diffusive and quantized conductances are consistent with recent data from GaAs/AlxGa1-xAs double quantum wires.

More Details

Magnetoconductance of Independently Tunable Tunnel-Coupled Double Quantum Wires

Physica E

Simmons, J.A.; Lyo, S.K.; Wendt, J.R.; Reno, J.L.; Simmons, J.A.

The authors report on their recent experimental studies of vertically-coupled quantum point contacts subject to in-plane magnetic fields. Using a novel flip-chip technique, mutually aligned split gates on both sides of a sub micron thick double quantum well heterostructure define a closely-coupled pair of ballistic one-dimensional (1D) constrictions. They observe quantized conductance steps due to each quantum well and demonstrate independent control of each ID constriction width. In addition, a novel magnetoconductance feature at {approximately}6 T is observed when a magnetic field is applied perpendicular to both the current and growth directions. This conductance dip is observed only when 1D subbands are populated in both the top and bottom constrictions. This data is consistent with a counting model whereby the number of subbands crossing the Fermi level changes with field due to the formation of an anticrossing in each pair of 1D subbands.

More Details

Photon-Assisted Transmission through a Double-Barrier Structure

Applied Physics Letters

Lyo, S.K.

The authors study multi-photon-assisted transmission of electrons through single-step, single-barrier and double-barrier potential-energy structures as a function of the photon energy and the temperature. Sharp resonances in the spectra of the tunneling current through double-barrier structures are relevant to infra-red detectors.

More Details

Real-space and energy representations for the interface roughness scattering in quantum-well structures

Solid State Communications

Lyo, S.K.

The authors show that the real space representation of the interface-roughness as a fluctuating potential in the coordinate space is equivalent to the usual energy-fluctuation representation for intrasublevel scattering in a single quantum well with a generally shaped confinement-potential profile. The coordinate picture is, however, more general and can be used for higher-order effects and multi-sublevel scattering in coupled multi-quantum-well structures.

More Details

Magnetic anticrossing of 1D subbands in ballistic double quantum wires

Superlattices and Microstructures

Blount, M.A.; Simmons, J.A.; Moon, J.S.; Lyo, S.K.; Wendt, J.R.; Reno, J.L.

We study the low-temperature in-plane magnetoconductance of vertically coupled double quantum wires. Using a novel flip-chip technique, the wires are defined by two pairs of mutually aligned split gates on opposite sides of a≤1 micron thick AlGaAs/GaAs double quantum well heterostructure. We observe quantized conductance steps due to each quantum well and demonstrate independent control of each 1D wire. A broad dip in the magnetoconductance at approximately 6 T is observed when a magnetic field is applied perpendicular to both the current and growth directions. This conductance dip is observed only when 1D subbands are populated in both the top and bottom constrictions. This data is consistent with a counting model whereby the number of subbands crossing the Fermi level changes with field due to the formation of an anticrossing in each pair of 1D subbands.

More Details
Results 26–31 of 31
Results 26–31 of 31