Application of an Automatic Constraint Shape Selection Algorithm for Input Estimation
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Vibration and Acoustics, Transactions of the ASME
Acoustic-structure coupling can substantially alter the frequency response of air-filled structures. Coupling effects typically manifest as two resonance peaks at frequencies above and below the resonant frequency of the uncoupled structural system. Here, a dynamic substructuring approach is applied to a simple acoustic-structure system to expose how the system response depends on the damping in the acoustic subsystem. Parametric studies show that as acoustic damping is increased, the frequencies and amplitudes of the coupled resonances in the structural response undergo a sequence of changes. For low levels of acoustic damping, the two coupled resonances have amplitudes approximating the corresponding in vacuo resonance. As acoustic damping is increased, resonant amplitudes decrease dramatically while the frequency separation between the resonances tends to increase slightly. When acoustic damping is increased even further, the separation of the resonant frequencies decreases below their initial separation. Finally, at some critical value of acoustic damping, one of the resonances abruptly disappears, leaving just a single resonance. Counterintuitively, increasing acoustic damping beyond this point tends to increase the amplitude of the remaining resonance peak. These results have implications for analysts and experimentalists attempting to understand, mitigate, or otherwise compensate for the confounding effects of acoustic-structure coupling in fluid-filled test structures.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Conference Proceedings of the Society for Experimental Mechanics Series
Finite element models are regularly used in many disciplines to predict dynamic behavior of a structure under certain loads and subject to various boundary conditions, in particular when analytical models cannot be used due to geometric complexity. One such example is a structure with an entrained fluid cavity. To assist an experimental study of the acoustoelastic effect, numerical studies of an enclosed cylinder were performed to design the test hardware. With a system that demonstrates acoustoelastic coupling, it was then desired to make changes to decouple the structure from the fluid by making changes to either the fluid or the structure. In this paper, simulation is used to apply various changes and observe the effects on the structural response to choose an effective decoupling approach for the experimental study.
Conference Proceedings of the Society for Experimental Mechanics Series
Acoustoelastic coupling occurs when a hollow structure’s in-vacuo mode aligns with an acoustic mode of the internal cavity. The impact of this coupling on the total dynamic response of the structure can be quite severe depending on the similarity of the modal frequencies and shapes. Typically, acoustoelastic coupling is not a design feature, but rather an unfortunate result that must be remedied as modal tests are often used to correlate or validate finite element models of the uncoupled structure. Here, however, a test structure is intentionally designed such that multiple structural and acoustic modes are well-aligned, resulting in a coupled system that allows for an experimental investigation. Coupling in the system is first identified using a measure termed the magnification factor and the structural-acoustic interaction for a target mode is then measured. Modifications to the system demonstrate the dependency of the coupling with respect to changes in the mode shape and frequency proximity. This includes an investigation of several practical techniques used to decouple the system by altering the internal acoustic cavity, as well as the structure itself. Furthermore, acoustic absorption material effectively decoupled the structure while structural modifications, in their current form, proved unsuccessful. The most effective acoustic absorption method consisted of randomly distributing typical household paper towels in the acoustic cavity; a method that introduces negligible mass to the structural system with the additional advantages of being inexpensive and readily available.
AIAA Aviation 2019 Forum
Two novel and challenging applications of high-frequency pressure-sensitive paint were attempted for ground testing at Sandia National Labs. Blast tube testing, typically used to assess the response of a system to an incident blast wave, was the first application. The paint was tested to show feasibility for supplementing traditional pressure instrumentation in the harsh outdoor environment. The primary challenge was the background illumination from sunlight and time-varying light contamination from the associated explosion. Optimal results were obtained in pre-dawn hours when sunlight contamination was absent; additional corrections must be made for the intensity of the explosive illumination. A separate application of the paint for acoustic testing was also explored to provide the spatial distribution of loading on systems that do not contain pressure instrumentation. In that case, the challenge was the extremely low level of pressure variations that the paint must resolve (120 dB). Initial testing indicated the paint technique merits further development for a larger scale reverberant chamber test with higher loading levels near 140 dB.
65th Annual Technical Meeting and Exposition of the Institute of Environmental Sciences and Technology, ESTECH 2019
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
A series of modal tests were performed on an acoustoelastic system to explore how changes to the air and structural components affect the acoustoelastic coupling. This work is a continuation of previous experimental and analytical efforts. Here, the test method and perturbations were much more controlled than in previous tests, resulting in more refined data. Outputs of interest here are the coupled system modes as well as the resulting frequency response for various perturbations of the coupled system. Perturbations explored in this work include mass loading the structure, changing the air damping, and changing the air boundary conditions. Results of these tests indicate that simply adding damping to the air component, using foam or other absorptive material, is not sufficient to fully decouple the system. Rather, it is preferred to employ a change to the air boundary conditions, in the form of volume inclusions or scatterers, to prevent formation of the acoustic coupled mode.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Conference Proceedings of the Society for Experimental Mechanics Series
A phenomenon in which structural and internal acoustic modes couple is occasionally observed during modal testing. If the structural and acoustic modes are compatible (similar frequencies and shapes), the structural mode can split into two separate modes with the same shape but different frequencies; where one mode is expected, two are observed in the structural response. For a modal test that will inform updates to an analytical model (e.g. finite element), the test and model conditions should closely match. This implies that a system exhibiting strongly coupled structural-acoustic modes in test should have a corresponding analytical model that captures that coupling. However, developing and running a coupled structural-acoustic finite element model can be challenging and may not be necessary for the end use of the model. In this scenario, it may be advantageous to alter the test conditions to match the in-vacuo structural model by de-coupling the structural and acoustic modes. Here, acoustic absorption material was used to decouple the modes and attempt to measure the in-vacuo structural response. It was found that the split peak could be eliminated by applying sufficient acoustic absorbing material to the air cavity. However, it was also observed that the amount of acoustic absorbing material had an effect on the apparent structural damping of a second, separate mode. Analytical and numerical methods were used to demonstrate how coupled systems interact with changes to damping and mode frequency proximity while drawing parallels to the phenomena observed during modal tests.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Conference Proceedings of the Society for Experimental Mechanics Series
Simulation of the response of a system to an acoustic environment is desirable in the assessment of aerospace structures in flight-like environments. In simulating a laboratory acoustic test a large challenge is modeling the as-tested acoustic field. Acoustic source inversion capabilities in Sandia’s Sierra/SD structural dynamics code have allowed for the determination of an acoustic field based on measured microphone responses—given measured pressures, source inversion optimization algorithms determine the input parameters of a set of acoustic sources defined in an acoustic finite element model. Inherently, the resulting acoustic field is dependent on the target microphone data. If there are insufficient target points, then the as-tested field may not be recreated properly. Here, the question of number of microphones is studied using synthetic data, that is, target data taken from a previous simulation which allows for comparison of the full pressure field—an important benefit not available with test data. By exploring a range of target points distributed throughout the domain, a rate of convergence to the true field can be observed. Results will be compared with the goal of developing guidelines for the number of sensors required to aid in the design of future laboratory acoustic tests to be used for model assessment.
Conference Proceedings of the Society for Experimental Mechanics Series
Aero-acoustic loading has been established as the primary source of excitation for a Flight System at Sandia National Laboratories. However, flight data of this system does not exist, limiting estimations of system or component response in this environment. Therefore, an experimental acoustic simulation was performed on a heavily-instrumented Flight System, using the direct-field acoustic test (DFAT) method with a multi-input multi-output (MIMO) control system. The combination of DFAT and MIMO resulted in attaining uniform and gradient acoustic fields as high as 127 dB OASPL. This paper will discuss the design of the test, the speaker and controller configurations, and the test results of this unique test method. Additionally, an overview of the method used to apply the measured test data to the pressure-loading finite element simulations of the Flight System will be discussed as well.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.