Determination of Key Marine Environment Effects on Maximum Pit Size Predictions
Abstract not provided.
Abstract not provided.
Electrochemistry Communications
Here, for the first time, we demonstrate the use of an in situ spectroelectrochemical Raman technique to explore simulated atmospheric corrosion scenarios with a variable boundary layer thickness (δ). The effects of solution flow rate on oxygen concentration and δ were explored. It was found solution regeneration is necessary to prevent oxygen depletion in the Raman cell. It was further shown that by increasing the solution flow rate, the effective δ decreases and allows for the investigation of atmospheric corrosion scenarios. Finally, the technique developed was utilized to explore the effect of precipitation on the cathodic behavior of SS304L in dilute MgCl2. During cathodic polarization, evidence supports previous observations that magnesium hydroxide species are kinetically favored over the thermodynamically predicted magnesium carbonate.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.