Publications

Results 26–50 of 106
Skip to search filters

Hybrid phenolic-inducible promoters towards construction of self-inducible systems for microbial lignin valorization

Biotechnology for Biofuels

Varman, Arul M.; Follenfant, Rhiannon; Liu, Fang L.; Davis, Ryan W.; Lin, Yone K.; Singh, Seema S.

Background: Engineering strategies to create promoters that are both higher strength and tunable in the presence of inexpensive compounds are of high importance to develop metabolic engineering technologies that can be commercialized. Lignocellulosic biomass stands out as the most abundant renewable feedstock for the production of biofuels and chemicals. However, lignin a major polymeric component of the biomass is made up of aromatic units and remains as an untapped resource. Novel synthetic biology tools for the expression of heterologous proteins are critical for the effective engineering of a microbe to valorize lignin. This study demonstrates the first successful attempt in the creation of engineered promoters that can be induced by aromatics present in lignocellulosic hydrolysates to increase heterologous protein production. Results: A hybrid promoter engineering approach was utilized for the construction of phenolic-inducible promoters of higher strength. The hybrid promoters were constructed by replacing the spacer region of an endogenous promoter, P emrR present in E. coli that was naturally inducible by phenolics. In the presence of vanillin, the engineered promoters P vtac, P vtrc, and P vtic increased protein expression by 4.6-, 3.0-, and 1.5-fold, respectively, in comparison with a native promoter, P emrR. In the presence of vanillic acid, P vtac, P vtrc, and P vtic improved protein expression by 9.5-, 6.8-, and 2.1-fold, respectively, in comparison with P emrR. Among the cells induced with vanillin, the emergence of a sub-population constituting the healthy and dividing cells using flow cytometry was observed. The analysis also revealed this smaller sub-population to be the primary contributor for the increased expression that was observed with the engineered promoters. Conclusions: This study demonstrates the first successful attempt in the creation of engineered promoters that can be induced by aromatics to increase heterologous protein production. Employing promoters inducible by phenolics will provide the following advantages: (1) develop substrate inducible systems; (2) lower operating costs by replacing expensive IPTG currently used for induction; (3) develop dynamic regulatory systems; and (4) provide flexibility in operating conditions. The flow cytometry findings strongly suggest the need for novel approaches to maintain a healthy cell population in the presence of phenolics to achieve increased heterologous protein expression and, thereby, valorize lignin efficiently.

More Details

Engineering Escherichia coli for the production of terpene mixture enriched in caryophyllene and caryophyllene alcohol as potential aviation fuel compounds

Metabolic Engineering Communications

Davis, Ryan W.; Wu, Benjamin C.; Wu, Weihua W.

Caryophyllene, a natural bicyclical sesquiterpene compound, and its alcohol are widely used in citrus flavors, spice blends, soaps, detergents, creams, lotions as well as in various food and beverage products. Recent studies have revealed that beta-caryophyllene exhibits a wide range of biological activities including anti-inflammatory, anti-cancer, anti-genotoxic capacity, neuroprotection…etc. Besides the biological activities, recent studies suggested blending of hydrogenated sesquiterpanes (carophyllanes, in particular, which have a moderate cetane number and only moderately high viscosity) with synthetic branched paraffins to raise cetane and reduce viscosity. Therefore, caryophyllene and its isomers have been deemed to be among the top three most promising jet fuel compounds with increased energy density. In this study, caryophyllene, caryolan-1-ol, and other terpenes were significantly produced by heterologous expressing a mevalonate pathway with a geranyl pyrophosphate synthase (GPPS), a caryophyllene synthase, and a caryolan-1-ol synthase into an E.coli strain. With the optimization of metabolic flux through four different pathway constructs and fermentation parameters, the engineered strains yielded 448.7mg/L total terpene including 405.9 mg/L sesquiterpene, 42.7 mg/L monoterpene,100 mg/L of caryophyllene, 10 mg/L of caryolan-1-ol. Furthermore, an algal hydrolysate was used by the engineered strain as solo carbon source for the production of caryophyllene and other terpene compounds. Under optimal fermentation conditions, the total terpene, sesquiterpene, and caryophyllene reached 360.3-, 322.5-, and 75.2 mg/L, respectively. The highest yields achieved were 47.9 mg total terpene/ g algae and 10.0 mg caryophyllene/ g algae, respectively, which is about ten times higher than essential oil yield extracted from plant tissue. This study was the first report of caryophyllene production using algae biomass as feedstock. The study provides a sustainable alternative for caryophyllene and its alcohol production as potential candidates for next generation aviation fuels and pharmaceutical applications.

More Details

Bioconversion of distillers' grains hydrolysates to advanced biofuels by an Escherichia coli co-culture

Microbial Cell Factories

Liu, Fang L.; Wu, Weihua; Tran-Gyamfi, Mary B.; Jaryenneh, James D.; Zhuang, Xun; Davis, Ryan W.

Background: First generation bioethanol production utilizes the starch fraction of maize, which accounts for approximately 60% of the ash-free dry weight of the grain. Scale-up of this technology for fuels applications has resulted in a massive supply of distillers' grains with solubles (DGS) coproduct, which is rich in cellulosic polysaccharides and protein. It was surmised that DGS would be rapidly adopted for animal feed applications, however, this has not been observed based on inconsistency of the product stream and other logistics-related risks, especially toxigenic contaminants. Therefore, efficient valorization of DGS for production of petroleum displacing products will significantly improve the techno-economic feasibility and net energy return of the established starch bioethanol process. In this study, we demonstrate 'one-pot' bioconversion of the protein and carbohydrate fractions of a DGS hydrolysate into C4 and C5 fusel alcohols through development of a microbial consortium incorporating two engineered Escherichia coli biocatalyst strains. Results: The carbohydrate conversion strain E. coli BLF2 was constructed from the wild type E. coli strain B and showed improved capability to produce fusel alcohols from hexose and pentose sugars. Up to 12 g/L fusel alcohols was produced from glucose or xylose synthetic medium by E. coli BLF2. The second strain, E. coli AY3, was dedicated for utilization of proteins in the hydrolysates to produce mixed C4 and C5 alcohols. To maximize conversion yield by the co-culture, the inoculation ratio between the two strains was optimized. The co-culture with an inoculation ratio of 1:1.5 of E. coli BLF2 and AY3 achieved the highest total fusel alcohol titer of up to 10.3 g/L from DGS hydrolysates. The engineered E. coli co-culture system was shown to be similarly applicable for biofuel production from other biomass sources, including algae hydrolysates. Furthermore, the co-culture population dynamics revealed by quantitative PCR analysis indicated that despite the growth rate difference between the two strains, co-culturing didn't compromise the growth of each strain. The q-PCR analysis also demonstrated that fermentation with an appropriate initial inoculation ratio of the two strains was important to achieve a balanced co-culture population which resulted in higher total fuel titer. Conclusions: The efficient conversion of DGS hydrolysates into fusel alcohols will significantly improve the feasibility of the first generation bioethanol process. The integrated carbohydrate and protein conversion platform developed here is applicable for the bioconversion of a variety of biomass feedstocks rich in sugars and proteins.

More Details

Cofactor engineering of ketol-acid reductoisomerase (IlvC) and alcohol dehydrogenase (YqhD) improves the fusel alcohol yield in algal protein anaerobic fermentation

Algal Research

Wu, Weihua W.; Tran-Gyamfi, Mary B.; Jaryenneh, James D.; Davis, Ryan W.

The feasibility of converting algal protein to mixed alcohols has recently been demonstrated with an engineered E. coli strain, enabling comprehensive utilization of the biomass for biofuel applications. However, the yield and titers of mixed alcohol production must be improved for market adoption. A major limiting factor for achieving the necessary yield and titer improvements is cofactor imbalance during the fermentation of algal protein. To resolve this problem, a directed evolution approach was applied to modify the cofactor specificity of two key enzymes (IlvC and YqhD) from NADPH to NADH in the mixed alcohol metabolic pathway. Using high throughput screening, more than 20 YqhD mutants were identified to show activity on NADH as a cofactor. Of these 20 mutants, the four highest activity YqhD mutants were selected for combination with two IlvC mutants, both accepting NADH as a redox cofactor, for modification of the protein conversion strain. The combination of the IlvC and YqhD mutants yielded a refined E. coli strain, subtype AY3, with increased fusel alcohol yield of ~ 60% compared to wild type under anaerobic fermentation on amino acid mixtures. When applied to real algal protein hydrolysates, the strain AY3 produced 100% and 38% more total mixed alcohols than the wild type strain on two different algal hydrolysates, respectively. The results indicate that cofactor engineering is a promising approach to improve the feasibility of bioconversion of algal protein into mixed alcohols as advanced biofuels.

More Details
Results 26–50 of 106
Results 26–50 of 106