Publications

Results 51–100 of 113
Skip to search filters

Feedback Resonating Control for a Wave Energy Converter

SPEEDAM 2018 - Proceedings: International Symposium on Power Electronics, Electrical Drives, Automation and Motion

Nevarez, Victor N.; Bacelli, Giorgio B.; Coe, Ryan G.; Wilson, David G.

Through the use of advanced control techniques, wave energy converters have significantly improved energy absorption. The motion of the WEC device is a significant contribution to the energy absorbed by the device. Reactive control (complex conjugate control) maximizes the energy absorption due to the impedance matching. The issue with complex conjugate control is that the controller is non-causal, which requires prediction into the oncoming waves to the device. This paper explores the potential of using system identification (SID) techniques to build a causal transfer function that approximates the complex conjugate controller over a specific frequency band of interest. The resulting controller is stable, and the average efficiency of the power captured by the causal controller is 99%, when compared to the non-causal complex conjugate.

More Details

Design load analysis for wave energy converters

Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE

Van Rij, Jennifer; Yu, Yi H.; Coe, Ryan G.

This study demonstrates a systematic methodology for establishing the design loads of a wave energy converter. The proposed design load methodology incorporates existing design guidelines, where they exist, and follows a typical design progression; namely, advancing from many, quick, order-ofmagnitude accurate, conceptual stage design computations to a few, computationally intensive, high-fidelity, design validation simulations. The goal of the study is to streamline and document this process based on quantitative evaluations of the design loads' accuracy at each design step and consideration for the computational efficiency of the entire design process. For the wave energy converter, loads, and site conditions considered, this study demonstrates an efficient and accurate methodology of evaluating the design loads.

More Details

Full long-term design response analysis of a wave energy converter

Renewable Energy

Coe, Ryan G.; Michelen, Carlos; Eckert, Aubrey C.; Sallaberry, Cédric

Efficient design of wave energy converters requires an accurate understanding of expected loads and responses during the deployment lifetime of a device. A study has been conducted to better understand best-practices for prediction of design responses in a wave energy converter. A case-study was performed in which a simplified wave energy converter was analyzed to predict several important device design responses. The application and performance of a full long-term analysis, in which numerical simulations were used to predict the device response for a large number of distinct sea states, was studied. Environmental characterization and selection of sea states for this analysis at the intended deployment site were performed using principle-components analysis. The full long-term analysis applied here was shown to be stable when implemented with a relatively low number of sea states and convergent with an increasing number of sea states. As the number of sea states utilized in the analysis was increased, predicted response levels did not change appreciably. However, uncertainty in the response levels was reduced as more sea states were utilized.

More Details

A comparison of control strategies for wave energy converters

International Journal of Marine Energy

Coe, Ryan G.; Bacelli, Giorgio B.; Wilson, David G.; Abdelkhalik, Ossama; Korde, Umesh A.; Robinett, Rush D.

In this study, we employ a numerical model to compare the performance of a number of wave energy converter control strategies. The controllers selected for evaluation span a wide range in their requirements for implementation. Each control strategy is evaluated using a single numerical model with a set of sea states to represent a deployment site off the coast of Newport, OR. A number of metrics, ranging from power absorption to kinematics, are employed to provide a comparison of each control strategy's performance that accounts for both relative benefits and costs. The results show a wide range of performances from the different controllers and highlight the need for a holistic design approach which considers control design as a parallel component within the larger process WEC design.

More Details

An assessment of WEC control performance uncertainty

Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE

Coe, Ryan G.; Bacelli, Giorgio B.; Wilson, David G.

A linear dynamic model for a wave energy converter (WEC) has been developed based on the results of experimental wave tank testing. Based on this model, a model predictive control (MPC) strategy has been designed and implemented. To assess the performance of this control strategy, a deployment environment off the coast of Newport, OR has been selected and the controller has been used to simulate the WEC response in a set of irregular sea states. To better understand the influence of model accuracy on control performance, an uncertainty analysis has been performed by varying the parameters of the model used for the design of the controller (i.e. the control model), while keeping the WEC dynamic model employed in these simulations (i.e. the plant model) unaltered. The results of this study indicate a relative low sensitivity of the MPC control strategy to uncertainties in the controller model for the specific case studied here.

More Details

WEC geometry optimization with advanced control

Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE

Coe, Ryan G.; Bacelli, Giorgio B.; Wilson, David G.

A study was performed to optimize the geometry of a point absorber style wave energy converter (WEC). An axisymmetric single-body device, moving in heave only, was considered. Design geometries, generated using a parametric definition, were optimized using genetic algorithms. Each geometry was analyzed using a boundary element model (BEM) tool to obtain corresponding frequency domain models. Based on these models, a pseudo-spectral method was applied to develop a control methodology for each geometry. The performance of each design was assessed using a Bretschneider sea state. The objective of optimization is to maximize harvested energy. In this preliminary investigation, a constraint is imposed on the the geometry to guarantee a linear dynamic model would be valid for all geometries generated by the optimization tool. Numerical results are presented for axisymmetric buoy shapes.

More Details

Estimation of excitation force on wave energy converters using pressure measurements for feedback control

OCEANS 2016 MTS/IEEE Monterey, OCE 2016

Abdelkhalik, Ossama; Zou, Shangyan; Bacelli, Giorgio B.; Robinett, Rush D.; Wilson, David G.; Coe, Ryan G.

Many of the control strategies for wave energy converters (WECs) that have been studied in the literature rely on the availability of estimates for either the wave elevation or the exciting force caused by the incoming wave; with the objective of addressing this issue, this paper presents the design of a state estimator for a WEC. In particular, the work described in this paper is based on an extended Kalman filter that uses measurements from pressure sensors located on the hull of the WEC to estimate the wave exciting force. Simulation results conducted on a heaving point absorber WEC shows that the extended Kalman filter provides a good estimation of the exciting force in the presence of measurement noise combined with a simplified model of the system, thus making it a suitable candidate for the implementation in an experimental set-up.

More Details

Advanced WEC Dynamics & Controls FY16 Testing Report

Coe, Ryan G.; Bacelli, Giorgio B.; Wilson, David G.; Patterson, David

A model-scale wave tank test was conducted in the interest of improving control systems design of wave energy converters (WECs). The success of most control strategies is based directly upon the availability of a reduced-order model with the ability to capture the dynamics of the system with sufficient accuracy. For this reason, the test described in this report, which is the first in a series of planned tests on WEC controls, focused on system identification (system ID) and model validation.

More Details

A comparison of WEC control strategies

Coe, Ryan G.; Bull, Diana L.; Bacelli, Giorgio B.; Wilson, David G.; Korde, Umesh A.; Robinett, Rush D.; Abdelkhalik, Ossama A.

The operation of Wave Energy Converter (WEC) devices can pose many challenging problems to the Water Power Community. A key research question is how to significantly improve the performance of these WEC devices through improving the control system design. This report summarizes an effort to analyze and improve the performance of WEC through the design and implementation of control systems. Controllers were selected to span the WEC control design space with the aim of building a more comprehensive understanding of different controller capabilities and requirements. To design and evaluate these control strategies, a model scale test-bed WEC was designed for both numerical and experimental testing (see Section 1.1). Seven control strategies have been developed and applied on a numerical model of the selected WEC. This model is capable of performing at a range of levels, spanning from a fully-linear realization to varying levels of nonlinearity. The details of this model and its ongoing development are described in Section 1.2.

More Details

On the short-term uncertainty in performance f a point absorber wave energy converter

Coe, Ryan G.; Michelen Strofer, Carlos A.; Manuel, Lance M.; Canning, Jarred C.

Of interest, in this study, is the quantification of uncertainty in the performance of a two-body wave point absorber (Reference Model 3 or RM3), which serves as a wave energy converter (WEC). We demonstrate how simulation tools may be used to establish short-term relationships between any performance parameter of the WEC device and wave height in individual sea states. We demonstrate this methodology for two sea states. Efficient structural reliability methods, validated using more expensive Monte Carlo sampling, allow the estimation of uncertainty in performance of the device. Such methods, when combined with metocean data quantifying the likelihood of different sea states, can be useful in long-term studies and in reliability-based design.

More Details
Results 51–100 of 113
Results 51–100 of 113