Publications

Results 26–50 of 52
Skip to search filters

Stabilization of ferroelectric phase of Hf0.58Zr0.42O2 on NbN at 4 K

Applied Physics Letters

Henry, M.D.; Smith, Sean S.; Lewis, Rupert; Ihlefeld, J.F.

Ferroelectricity in doped and alloyed hafnia thin films has been demonstrated using several different electrodes, with TiN and TaN being most prominent. In this work, we demonstrate ferroelectric Hf0.58Zr0.42O2 thin films with superconducting NbN electrodes at cryogenic temperatures. Demonstration of polarization - electric field [P(E)] response at liquid helium cryogenic temperatures, 4 K, suggests that the polarization is switchable over a wide temperature range after an initial 600 °C anneal. Further, room temperature P(E) and capacitance measurements demonstrate an expected polarization response with wake-up required to reach the steady state. Wake-up cycling at 4 K is observed to have no effect upon the ferroelectric phase suggesting an oxygen vacancy mobility freeze out whereas wake-up cycling at 294 K demonstrates close to a 3× increase in remanent polarization. This integration of a ferroelectric Hf0.58Zr0.42O2 thin film with NbN demonstrates the suitability of a highly scalable ferroelectric in applications for cryogenic technologies.

More Details

A single electron transistor charge sensor in strong rf fields

AIP Advances

Lewis, Rupert; Harris, C.T.; Shaner, E.A.

We measure the charge sensitivity, Se, of a single electron transistor (SET) in the presence of strong (Vrf ∼ e/Cg) spurious radio frequency (rf) signals at frequencies up to 50 MHz, where Cg is the gate capacitance. Although Se appears to degrade when exposed to Vrf, we find that broadening of conduction peaks is largely due to the measurement technique and show that Se is maintained even with strong Vrf present. We show cancellation of a known Vrf signal at 1 MHz, demonstrating that a stable bias point in the presence of rf signals is possible.

More Details

Tunable Nitride Josephson Junctions

Missert, Nancy A.; Henry, Michael D.; Lewis, Rupert; Howell, Stephen W.; Wolfley, Steven L.; Brunke, Lyle B.; Wolak, Matthaeus W.

We have developed an ambient temperature, SiO2/Si wafer - scale process for Josephson junctions based on Nb electrodes and Ta x N barriers with tunable electronic properties. The films are fabricated by magnetron sputtering. The electronic properties of the TaxN barriers are controlled by adjusting the nitrogen flow during sputtering. This technology offers a scalable alternative to the more traditional junctions based on AlOx barriers for low - power, high - performance computing.

More Details

Materials Study of NbN and TaxN Thin Films for SNS Josephson Junctions

IEEE Transactions on Applied Superconductivity

Missert, Nancy A.; Brunke, Lyle B.; Henry, Michael D.; Wolfley, Steven L.; Howell, Stephen W.; Mudrick, John M.; Lewis, Rupert

Properties of NbN and TaxN thin films grown at ambient temperatures on SiO2/Si substrates by reactive-pulsed laser deposition and reactive magnetron sputtering (MS) as a function of N2 gas flow were investigated. Both techniques produced films with smooth surfaces, where the surface roughness did not depend on the N2 gas flow during growth. High crystalline quality, (111) oriented NbN films with Tc up to 11 K were produced by both techniques for N contents near 50%. The low temperature transport properties of the TaxN films depended upon both the N2 partial pressure used during growth and the film thickness. The root mean square surface roughness of TaxN films grown by MS increased as the film thickness decreased down to 10 nm.

More Details

Vacuum gap microstrip microwave resonators for 2.5-D integration in quantum computing

IEEE Transactions on Applied Superconductivity

Lewis, Rupert; Henry, Michael D.; Schroeder, Katlin S.

Vacuum gap λ/2 microwave resonators are demonstrated as a route toward higher integration in superconducting qubit circuits. The resonators are fabricated from pieces on two silicon chips bonded together with an In-Sb bond. Measurements of the devices yield resonant frequencies in good agreement with simulations. Creating low loss circuits in this geometry is also discussed.

More Details

Degradation of superconducting Nb/NbN films by atmospheric oxidation

IEEE Transactions on Applied Superconductivity

Henry, Michael D.; Wolfley, Steven L.; Young, Travis R.; Monson, Todd M.; Pearce, Charles J.; Lewis, Rupert; Clark, Blythe C.; Brunke, Lyle B.; Missert, Nancy A.

Niobium and niobium nitride thin films are transitioning from fundamental research toward wafer scale manufacturing with technology drivers that include superconducting circuits and electronics, optical single photon detectors, logic, and memory. Successful microfabrication requires precise control over the properties of sputtered superconducting films, including oxidation. Previous work has demonstrated the mechanism in oxidation of Nb and how film structure could have deleterious effects upon the superconducting properties. This study provides an examination of atmospheric oxidation of NbN films. By examination of the room temperature sheet resistance of NbN bulk oxidation was identified and confirmed by secondary ion mass spectrometry. As a result, Meissner magnetic measurements confirmed the bulk oxidation not observed with simple cryogenic resistivity measurements.

More Details
Results 26–50 of 52
Results 26–50 of 52