Publications

Results 101–119 of 119
Skip to search filters

Integrated NEMS and optoelectronics for sensor applications

Czaplewski, David A.; Krishnamoorthy, Uma K.; Okandan, Murat O.; Olsson, Roy H.; Serkland, Darwin K.; Warren, M.E.

This work utilized advanced engineering in several fields to find solutions to the challenges presented by the integration of MEMS/NEMS with optoelectronics to realize a compact sensor system, comprised of a microfabricated sensor, VCSEL, and photodiode. By utilizing microfabrication techniques in the realization of the MEMS/NEMS component, the VCSEL and the photodiode, the system would be small in size and require less power than a macro-sized component. The work focused on two technologies, accelerometers and microphones, leveraged from other LDRD programs. The first technology was the nano-g accelerometer using a nanophotonic motion detection system (67023). This accelerometer had measured sensitivity of approximately 10 nano-g. The Integrated NEMS and optoelectronics LDRD supported the nano-g accelerometer LDRD by providing advanced designs for the accelerometers, packaging, and a detection scheme to encapsulate the accelerometer, furthering the testing capabilities beyond bench-top tests. A fully packaged and tested die was never realized, but significant packaging issues were addressed and many resolved. The second technology supported by this work was the ultrasensitive directional microphone arrays for military operations in urban terrain and future combat systems (93518). This application utilized a diffraction-based sensing technique with different optical component placement and a different detection scheme from the nano-g accelerometer. The Integrated NEMS LDRD supported the microphone array LDRD by providing custom designs, VCSELs, and measurement techniques to accelerometers that were fabricated from the same operational principles as the microphones, but contain proof masses for acceleration transduction. These devices were packaged at the end of the work.

More Details

A three-dimensional neural recording microsystem with implantable data compression circuitry

Digest of Technical Papers - IEEE International Solid-State Circuits Conference

Olsson, Roy H.; Wise, Kensall

A 256-site microsystem comprises 4 neural recording arrays with integrated amplification and multiplexing circuitry and an implantable spike detection ASIC. The spike detector compresses the amount of neural data by 92%, increasing the total number of channels recorded wirelessly from 25 to 312. The implantable circuitry consumes 5.4mW at 3V. ©2005 IEEE.

More Details

A digital accelerometer array utilizing suprathreshold stochastic resonance for detection of sub-Brownian noise floor accelerations

Carr, Dustin W.; Olsson, Roy H.

The goal of this LDRD project was to evaluate the possibilities of utilizing Stochastic resonance in micromechanical sensor systems as a means for increasing signal to noise for physical sensors. A careful study of this field reveals that in the case of a single sensing element, stochastic resonance offers no real advantage. We have, however, identified a system that can utilize very similar concepts to stochastic resonance in order to achieve an arrayed sensor system that could be superior to existing technologies in the field of inertial sensors, and could offer a very low power technique for achieving navigation grade inertial measurement units.

More Details
Results 101–119 of 119
Results 101–119 of 119