Publications

Results 26–50 of 70
Skip to search filters

High-voltage atmospheric breakdown across intervening rutile dielectrics

Simpson, Sean S.; Coats, Rebecca S.; Hjalmarson, Harold P.; Jorgenson, Roy E.; Pasik, Michael F.

This report documents work conducted in FY13 on electrical discharge experiments performed to develop predictive computational models of the fundamental processes of surface breakdown in the vicinity of high-permittivity material interfaces. Further, experiments were conducted to determine if free carrier electrons could be excited into the conduction band thus lowering the effective breakdown voltage when UV photons (4.66 eV) from a high energy pulsed laser were incident on the rutile sample. This report documents the numerical approach, the experimental setup, and summarizes the data and simulations. Lastly, it describes the path forward and challenges that must be overcome in order to improve future experiments for characterizing the breakdown behavior for rutile.

More Details

Protection characteristics of a Faraday cage compromised by lightning burnthrough

Warne, Larry K.; Martinez, Leonard E.; Jorgenson, Roy E.; Merewether, Kimball O.; Jojola, John M.; Coats, Rebecca S.; Bystrom, Edward B.

A lightning flash consists of multiple, high-amplitude but short duration return strokes. Between the return strokes is a lower amplitude, continuing current which flows for longer duration. If the walls of a Faraday cage are made of thin enough metal, the continuing current can melt a hole through the metal in a process called burnthrough. A subsequent return stroke can couple energy through this newly-formed hole. This LDRD is a study of the protection provided by a Faraday cage when it has been compromised by burnthrough. We initially repeated some previous experiments and expanded on them in terms of scope and diagnostics to form a knowledge baseline of the coupling phenomena. We then used a combination of experiment, analysis and numerical modeling to study four coupling mechanisms: indirect electric field coupling, indirect magnetic field coupling, conduction through plasma and breakdown through the hole. We discovered voltages higher than those encountered in the previous set of experiments (on the order of several hundreds of volts).

More Details

Dielectric surface effects on transient ARCS in lightning arrester devices

Digest of Technical Papers-IEEE International Pulsed Power Conference

Hjalmarson, Harold P.; Pineda, A.C.; Jorgenson, Roy E.; Pasik, Michael F.

Continuum calculations are used to understand the avalanche growth of electrical current in a composite insulator consisting of an air gap and a solid dielectic. The results show that trapped charge can quench the electrical breakdown. The results are compared with phenomena found in dielectric barrier discharge (DBD) devices. © 2011 IEEE.

More Details

Time harmonic two-dimensional cavity scar statistics: Convex mirrors and bowtie

Electromagnetics

Warne, Larry K.; Jorgenson, Roy E.; Kotulski, J.D.; Lee, K.S.H.

This article examines the localization of time harmonic high-frequency modal fields in two-dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This article examines the enhancements for these unstable orbits when the opposing mirrors are convex, constructing the high-frequency field in the scar region using elliptic cylinder coordinates in combination with a random reflection phase from the outer chaotic region. The enhancements when the cavity is symmetric as well as asymmetric about the orbit are examined. © Taylor & Francis Group, LLC.

More Details

Electromagnetic coupling between transmitters and electro-explosive devices located within an enclosure

Jorgenson, Roy E.; Warne, Larry K.; Coats, Rebecca S.

This report documents calculations conducted to determine if 42 low-power transmitters located within a metallic enclosure can initiate electro-explosive devices (EED) located within the same enclosure. This analysis was performed for a generic EED no-fire power level of 250 mW. The calculations show that if the transmitters are incoherent, the power available is 32 mW - approximately one-eighth of the assumed level even with several worst-case assumptions in place.

More Details

Surface interactions involved in flashover with high density electronegative gases

Warne, Larry K.; Jorgenson, Roy E.; Lehr, J.M.

This report examines the interactions involved with flashover along a surface in high density electronegative gases. The focus is on fast ionization processes rather than the later time ionic drift or thermalization of the discharge. A kinetic simulation of the gas and surface is used to examine electron multiplication and includes gas collision, excitation and ionization, and attachment processes, gas photoionization and surface photoemission processes, as well as surface attachment. These rates are then used in a 1.5D fluid ionization wave (streamer) model to study streamer propagation with and without the surface in air and in SF6. The 1.5D model therefore includes rates for all these processes. To get a better estimate for the behavior of the radius we have studied radial expansion of the streamer in air and in SF6. The focus of the modeling is on voltage and field level changes (with and without a surface) rather than secondary effects, such as, velocities or changes in discharge path. An experiment has been set up to carry out measurements of threshold voltages, streamer velocities, and other discharge characteristics. This setup includes both electrical and photographic diagnostics (streak and framing cameras). We have observed little change in critical field levels (where avalanche multiplication sets in) in the gas alone versus with the surface. Comparisons between model calculations and experimental measurements are in agreement with this. We have examined streamer sustaining fields (field which maintains ionization wave propagation) in the gas and on the surface. Agreement of the gas levels with available literature is good and agreement between experiment and calculation is good also. Model calculations do not indicate much difference between the gas alone versus the surface levels. Experiments have identified differences in velocity between streamers on the surface and in the gas alone (the surface values being larger).

More Details

Streamer initiation in volume and surface discharges in atmospheric gases

Proceedings of the 2008 IEEE International Power Modulators and High Voltage Conference, PMHVC

Lehr, J.M.; Warne, Larry K.; Jorgenson, Roy E.; Wallace, Z.R.; Hodge, K.C.; Caldwell, Michele C.

It is generally acknowledged that once a highly conductive channel is established between two charged and conducting materials, electrical breakdown is well established and difficult to interrupt. An understanding of the initiation mechanism for electrical breakdown is crucial for devising mitigating methods to avoid catastrophic failures. Both volumetric and surface discharges are of interest. An effort is underway where experiments and theory are being simultaneously developed. The experiment consists of an impedance matched discharge chamber capable of investigating various gases and pressures to ten atmospheres. In addition to current and voltage measurements, a high dynamic range streak camera records streamer velocities. The streamer velocities are particularly valuable for comparison with theory. A streamer model is being developed which includes photo-ionization and particle interactions with an insulating surface. The combined theoretical and experimental effort is aimed at detailed comparisons of streamer development as well as a quantitative understanding of how streamers interact with dielectric surfaces and the resulting effects on breakdown voltage. © 2008 IEEE.

More Details

Model for resonant plasma probe

Johnson, William Arthur.; Coats, Rebecca S.; Jorgenson, Roy E.; Hebner, Gregory A.

This report constructs simple circuit models for a hairpin shaped resonant plasma probe. Effects of the plasma sheath region surrounding the wires making up the probe are determined. Electromagnetic simulations of the probe are compared to the circuit model results. The perturbing effects of the disc cavity in which the probe operates are also found.

More Details

Fundamental science investigations to develop a 6-MV laser triggered gas switch for ZR: first annual report

Maenchen, John E.; Savage, Mark E.; Struve, Kenneth W.; Woodworth, Joseph R.; Lehr, J.M.; Warne, Larry K.; Bliss, David E.; Jorgenson, Roy E.; LeChien, Keith R.; McKee, George R.; Pasik, Michael F.; Rosenthal, Stephen E.

In October 2005, an intensive three-year Laser Triggered Gas Switch (LTGS) development program was initiated to investigate and solve observed performance and reliability issues with the LTGS for ZR. The approach taken has been one of mission-focused research: to revisit and reassess the design, to establish a fundamental understanding of LTGS operation and failure modes, and to test evolving operational hypotheses. This effort is aimed toward deploying an initial switch for ZR in 2007, on supporting rolling upgrades to ZR as the technology can be developed, and to prepare with scientific understanding for the even higher voltage switches anticipated needed for future high-yield accelerators. The ZR LTGS was identified as a potential area of concern quite early, but since initial assessments performed on a simplified Switch Test Bed (STB) at 5 MV showed 300-shot lifetimes on multiple switch builds, this component was judged acceptable. When the Z{sub 20} engineering module was brought online in October 2003 frequent flashovers of the plastic switch envelope were observed at the increased stresses required to compensate for the programmatically increased ZR load inductance. As of October 2006, there have been 1423 Z{sub 20} shots assessing a variety of LTGS designs. Numerous incremental and fundamental switch design modifications have been investigated. As we continue to investigate the LTGS, the basic science of plastic surface tracking, laser triggering, cascade breakdown, and optics degradation remain high-priority mission-focused research topics. Significant progress has been made and, while the switch does not yet achieve design requirements, we are on the path to develop successively better switches for rolling upgrade improvements to ZR. This report summarizes the work performed in FY 2006 by the large team. A high-level summary is followed by detailed individual topical reports.

More Details
Results 26–50 of 70
Results 26–50 of 70