Monochromatic 6.151 keV radiographs of a highly unstable inertial confinement fusion capsule implosion
IEEE Transactions in Plasma Science (Special issue on %22Images in Plasma Science%22)
Abstract not provided.
IEEE Transactions in Plasma Science (Special issue on %22Images in Plasma Science%22)
Abstract not provided.
Magnetic Liner Inertial Fusion (MagLIF) [S. A. Slutz, et al., Phys. Plasmas 17 056303 (2010)] is a promising new concept for achieving >100 kJ of fusion yield on Z. The greatest threat to this concept is the Magneto-Rayleigh-Taylor (MRT) instability. Thus an experimental campaign has been initiated to study MRT growth in fast-imploding (<100 ns) cylindrical liners. The first sets of experiments studied aluminum liner implosions with prescribed sinusoidal perturbations (see talk by D. Sinars). By contrast, this poster presents results from the latest sets of experiments that used unperturbed beryllium (Be) liners. The purpose for using Be is that we are able to radiograph 'through' the liner using the 6-keV photons produced by the Z-Beamlet backlighting system. This has enabled us to obtain time-resolved measurements of the imploding liner's density as a function of both axial and radial location throughout the field of view. This data is allowing us to evaluate the integrity of the inside (fuel-confining) surface of the imploding liner as it approaches stagnation.
Physical Review Special Topics - Accelerators and Beams
Abstract not provided.
The magneto-Rayleigh-Taylor (MRT) instability is the most important instability for determining whether a cylindrical liner can be compressed to its axis in a relatively intact form, a requirement for achieving the high pressures needed for inertial confinement fusion (ICF) and other high energy-density physics applications. While there are many published RT studies, there are a handful of well-characterized MRT experiments at time scales >1 {micro}s and none for 100 ns z-pinch implosions. Experiments used solid Al liners with outer radii of 3.16 mm and thicknesses of 292 {micro}m, dimensions similar to magnetically-driven ICF target designs [1]. In most tests the MRT instability was seeded with sinusoidal perturbations ({lambda} = 200, 400 {micro}m, peak-to-valley amplitudes of 10, 20 {micro}m, respectively), wavelengths similar to those predicted to dominate near stagnation. Radiographs show the evolution of the MRT instability and the effects of current-induced ablation of mass from the liner surface. Additional Al liner tests used 25-200 {micro}m wavelengths and flat surfaces. Codes being used to design magnetized liner ICF loads [1] match the features seen except at the smallest scales (<50 {micro}m). Recent experiments used Be liners to enable penetrating radiography using the same 6.151 keV diagnostics and provide an in-flight measurement of the liner density profile.
Numerical simulations indicate that significant fusion yields (>100 kJ) may be obtained by pulsed-power-driven implosions of cylindrical metal liners onto magnetized and preheated deuterium-tritium fuel. The primary physics risk to this approach is the Magneto-Rayleigh-Taylor (MRT) instability, which operates during both the acceleration and deceleration phase of the liner implosion. We have designed and performed some experiments to study the MRT during the acceleration phase, where the light fluid is purely magnetic. Results from our first series of experiments and plans for future experiments will be presented. According to simulations, an initial axial magnetic field of 10 T is compressed to >100 MG within the liner during the implosion. The magnetic pressure becomes comparable to the plasma pressure during deceleration, which could significantly affect the growth of the MRT instability at the fuel/liner interface. The MRT instability is also important in some astronomical objects such as the Crab Nebula (NGC1962). In particular, the morphological structure of the observed filaments may be determined by the ratio of the magnetic to material pressure and alignment of the magnetic field with the direction of acceleration [Hester, ApJ, 456, 225 1996]. Potential experiments to study this MRT behavior using the Z facility will be presented.
Abstract not provided.
Abstract not provided.
AIP Conference Proceedings
Planar wire arrays are studied at 3-6 MA on the Saturn pulsed power generator as potential drivers of compact hohlraums for inertial confinement fusion studies . Comparison with zero-dimensional modeling suggests that there is significant trailing mass. The modeled energy coupled from the generator cannot generally explain the energy in the main x-ray pulse. Preliminary comparison at 1-6 MA indicates sub-quadratic scaling of x-ray power in a manner similar to compact cylindrical wire arrays. Time-resolved pinhole images are used to study the implosion dynamics. © 2009 American Institute of Physics.
Abstract not provided.
Abstract not provided.
Understanding and controlling hydrodynamic instabilities is critical to achieving ignition at National Ignition Facility (NIF). High resolution x-ray radiography of a NIF capsule may be able to measure key aspects of short wavelength instability growth including time dependent areal density variations, the dominant wavelength of growth, amount of growth from isolated capsule defects on the ablator and ice surfaces, and growth of perturbations as a result of the fill tube or dust contaminants. Radiography of the capsule limb may also place constraints on the width of the ice/ablator mix layer. Measurement of these various observables are important to determine what effect target design changes has on instability growth and to validate code predictions. We present an analysis of 2D and 3D HYDRA simulations and demonstrate how radiography can be used to diagnose signatures of mix in NIC capsules.
A series of ten shots were performed on the Saturn generator in short pulse mode in order to study planar and small-diameter cylindrical tungsten wire arrays at {approx}5 MA current levels and 50-60 ns implosion times as candidates for compact z-pinch radiation sources. A new vacuum hohlraum configuration has been proposed in which multiple z pinches are driven in parallel by a pulsed power generator. Each pinch resides in a separate return current cage, serving also as a primary hohlraum. A collection of such radiation sources surround a compact secondary hohlraum, which may potentially provide an attractive Planckian radiation source or house an inertial confinement fusion fuel capsule. Prior to studying this concept experimentally or numerically, advanced compact wire array loads must be developed and their scaling behavior understood. The 2008 Saturn planar array experiments extend the data set presented in Ref. [1], which studied planar arrays at {approx}3 MA, 100 ns in Saturn long pulse mode. Planar wire array power and yield scaling studies now include current levels directly applicable to multi-pinch experiments that could be performed on the 25 MA Z machine. A maximum total x-ray power of 15 TW (250 kJ in the main pulse, 330 kJ total yield) was observed with a 12-mm-wide planar array at 5.3 MA, 52 ns. The full data set indicates power scaling that is sub-quadratic with load current, while total and main pulse yields are closer to quadratic; these trends are similar to observations of compact cylindrical tungsten arrays on Z. We continue the investigation of energy coupling in these short pulse Saturn experiments using zero-dimensional-type implosion modeling and pinhole imaging, indicating 16 cm/?s implosion velocity in a 12-mm-wide array. The same phenomena of significant trailing mass and evidence for resistive heating are observed at 5 MA as at 3 MA. 17 kJ of Al K-shell radiation was obtained in one Al planar array fielded at 5.5 MA, 57 ns and we compare this to cylindrical array results in the context of a K-shell yield scaling model. We have also performed an initial study of compact 3 mm diameter cylindrical wire arrays, which are alternate candidates for a multi-pinch vacuum hohlraum concept. These massive 3.4 and 6 mg/cm loads may have been impacted by opacity, producing a maximum x-ray power of 7 TW at 4.5 MA, 45 ns. Future research directions in compact x-ray sources are discussed.
Planar wire arrays are studied at 3-6 MA on the Saturn pulsed power generator as potential drivers of compact hohlraums for inertial confinement fusion studies. Comparison with zero-dimensional modeling suggests that there is significant trailing mass. The modeled energy coupled from the generator cannot generally explain the energy in the main x-ray pulse. Preliminary comparison at 1-6 MA indicates sub-quadratic scaling of x-ray power in a manner similar to compact cylindrical wire arrays. Time-resolved pinhole images are used to study the implosion dynamics.
Physics of Plasmas
Achieving a high degree of radiation symmetry is a critical feature of target designs for indirect-drive inertial confinement fusion. Typically, the radiation flux incident on the capsule is required to be uniform to 1% or better. It is generally possible to design a hohlraum that provides low values of higher-order asymmetry (Legendre mode P10 and above) due to geometric averaging effects. Because low-order intrinsic asymmetry (e.g., Legendre modes P2 and P4) are less strongly reduced by geometric averaging alone, the development of innovative control techniques has been an active area of research in the inertial fusion community over the years. Shields placed inside the hohlraum are one example of a technique that has often been proposed and incorporated into hohlraum target designs. Simple mathematical considerations are presented indicating that radiation shields may be designed to specifically tune lower-order modes (e.g., P4) without deleterious effects on the higher order modes. Two-dimensional view factor and radiation-hydrodynamics simulations confirm these results and support such a path to achieving a highly symmetric x-ray flux. The term "mode-selective" is used because these shields, essentially ring structures offset from the capsule, are designed to affect only a specific Legendre mode (or multiple modes) of interest. © 2008 American Institute of Physics.
Physical Review Letters
We present on the first inertial-confinement-fusion ignition facility, the target capsule will be DT filled through a long, narrow tube inserted into the shell. μg-scale shell perturbations Δm' arising from multiple, 10–50 μm-diameter, hollow SiO2 tubes on x-ray-driven, ignition-scale, 1-mg capsules have been measured on a subignition device. Finally, simulations compare well with observation, whence it is corroborated that Δm' arises from early x-ray shadowing by the tube rather than tube mass coupling to the shell, and inferred that 10–20 μm tubes will negligibly affect fusion yield on a full-ignition facility.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review Letters
Abstract not provided.
Abstract not provided.
Physical Review Letters
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.