Publications

Results 101–126 of 126
Skip to search filters

Z-pinch requirements for achieving high yield fusion via a z-pinch driven, double ended hohlraum concept

2006 International Conference on Megagauss Magnetic Field Generation and Related Topics, including the International Workshop on High Energy Liners and High Energy Density Applications, MEGAGAUSS

Lemke, Raymond W.; Vesey, Roger A.; Cuneo, M.E.; Desjarlais, Michael P.; Mehlhorn, Thomas A.

Using two-dimensional (2D), radiation magnetohydrodynamics (RMHD) numerical simulations, we have designed a feasible z-pinch radiation source that ignites a high yield fuel capsule in a z-pinch driven, double ended hohlraum concept. The z-pinch is composed of nested beryllium (Be) shells and a coaxial, cylindrical foam converter. The z-pinch is designed to produce a shaped radiation pulse that compresses a capsule by a sequence of three shocks without significant entropy increase. We present results of simulations pertaining to the z-pinch design, and discuss conditions that must be achieved in the z-pinch to ensure production of the required radiation pulse. © 2008 IEEE.

More Details

Progress in symmetric ICF capsule implosions and wire-array z-pinch source physics for double z-pinch driven hohlraums

Proposed for publication in Plasma Physics and Controlled Fusion.

Cuneo, M.E.; Nash, Thomas J.; Yu, Edmund Y.; Mehlhorn, Thomas A.; Matzen, M.K.; Vesey, Roger A.; Bennett, Guy R.; Sinars, Daniel S.; Stygar, William A.; Rambo, Patrick K.; Smith, Ian C.; Bliss, David E.

Over the last several years, rapid progress has been made evaluating the double-z-pinch indirect-drive, inertial confinement fusion (ICF) high-yield target concept (Hammer et al 1999 Phys. Plasmas 6 2129). We have demonstrated efficient coupling of radiation from two wire-array-driven primary hohlraums to a secondary hohlraum that is large enough to drive a high yield ICF capsule. The secondary hohlraum is irradiated from two sides by z-pinches to produce low odd-mode radiation asymmetry. This double-pinch source is driven from a single electrical power feed (Cuneo et al 2002 Phys. Rev. Lett. 88 215004) on the 20 MA Z accelerator. The double z-pinch has imploded ICF capsules with even-mode radiation symmetry of 3.1 {+-} 1.4% and to high capsule radial convergence ratios of 14-21 (Bennett et al 2002 Phys. Rev. Lett. 89 245002; Bennett et al 2003 Phys. Plasmas 10 3717; Vesey et al 2003 Phys. Plasmas 10 1854). Advances in wire-array physics at 20 MA are improving our understanding of z-pinch power scaling with increasing drive current. Techniques for shaping the z-pinch radiation pulse necessary for low adiabat capsule compression have also been demonstrated.

More Details

Fast ignition breakeven scaling

Proposed for publication in Physics of Plasmas.

Slutz, Stephen A.; Vesey, Roger A.

A series of numerical simulations have been performed to determine scaling laws for fast ignition break even of a hot spot formed by energetic particles created by a short pulse laser. Hot spot break even is defined to be when the fusion yield is equal to the total energy deposited in the hot spot through both the initial compression and the subsequent heating. In these simulations, only a small portion of a previously compressed mass of deuterium-tritium fuel is heated on a short time scale, i.e., the hot spot is tamped by the cold dense fuel which surrounds it. The hot spot tamping reduces the minimum energy required to obtain break even as compared to the situation where the entire fuel mass is heated, as was assumed in a previous study [S. A. Slutz, R. A. Vesey, I. Shoemaker, T. A. Mehlhorn, and K. Cochrane, Phys. Plasmas 7, 3483 (2004)]. The minimum energy required to obtain hot spot break even is given approximately by the scaling law E{sub T} = 7.5({rho}/100){sup -1.87} kJ for tamped hot spots, as compared to the previously reported scaling of E{sub UT} = 15.3({rho}/100){sup -1.5} kJ for untamped hotspots. The size of the compressed fuel mass and the focusability of the particles generated by the short pulse laser determines which scaling law to use for an experiment designed to achieve hot spot break even.

More Details

Increasing Z-pinch vacuum hohlraum capsule coupling efficiency

Vesey, Roger A.; Cuneo, M.E.; Bennett, Guy R.; Mehlhorn, Thomas A.

Symmetric capsule implosions in the double-ended vacuum hohlraum (DEH) on Z have demonstrated convergence ratios of 14-21 for 2.15-mm plastic ablator capsules absorbing 5-7 kJ of x-rays, based on backlit images of the compressed ablator remaining at peak convergence [1]. Experiments with DD-filled 3.3-mm diameter capsules designed to absorb 14 kJ of x-rays have begun as an integrated test of drive temperature and symmetry, complementary to thin-shell symmetry diagnostic capsules. These capsule implosions are characterized by excellent control of symmetry (< 3% time-integrated), but low hohlraum efficiency (< 2%). Possible methods to increase the capsule absorbed energy in the DEH include mixed-component hohlraums, large diameter foam ablator capsules, transmissive shine shields between the z-pinch and capsule, higher spoke electrode x-ray transmission, a double-sided power feed, and smaller initial radius z-pinch wire arrays. Simulations will explore the potential for each of these modifications to increase the capsule coupling efficiency for near-term experiments on Z and ZR.

More Details

[Copy of characteristics and scaling of tungsten-wire-array z-pinch implosion dynamics at 20 MA.]

Proposed for publication in Physics of Plasmas.

Vesey, Roger A.; Yu, Edmund Y.; Nash, Thomas J.; Bliss, David E.; Bennett, Guy R.; Sinars, Daniel S.; Simpson, Walter W.; Ruggles, Larry R.; Wenger, D.F.; Garasi, Christopher J.; Aragon, Rafael A.; Fowler, William E.; Johnson, Drew J.; Keller, Keith L.; McGurn, John S.; Mehlhorn, Thomas A.; Speas, Christopher S.; Struve, Kenneth W.; Stygar, William A.; Chandler, Gordon A.

Abstract not provided.

Recyclable transmission line concept for z-pinch driven inertial fusion energy

Slutz, Stephen A.; Slutz, Stephen A.; Vesey, Roger A.; Olson, Craig L.; Cochrane, Kyle C.

Recyclable transmission lines (RTL)s are being studied as a means to repetitively drive z pinches to generate fusion energy. We have shown previously that the RTL mass can be quite modest. Minimizing the RTL mass reduces recycling costs and the impulse delivered to the first wall of a fusion chamber. Despite this reduction in mass, a few seconds will be needed to reload an RTL after each subsequent shot. This is in comparison to other inertial fusion approaches that expect to fire up to ten capsules per second. Thus a larger fusion yield is needed to compensate for the slower repetition rate in a z-pinch driven fusion reactor. We present preliminary designs of z-pinch driven fusion capsules that provide an adequate yield of 1-4 GJ. We also present numerical simulations of the effect of these fairly large fusion yields on the RTL and the first wall of the reactor chamber. These simulations were performed with and without a neutron absorbing blanket surrounding the fusion explosion. We find that the RTL will be fully vaporized out to a radius of about 3 meters assuming normal incidence. However, at large enough radius the RTL will remain in either the liquid or solid state and this portion of the RTL could fragment and become shrapnel. We show that a dynamic fragmentation theory can be used to estimate the size of these fragmented particles. We discuss how proper design of the RTL can allow this shrapnel to be directed away from the sensitive mechanical parts of the reactor chamber.

More Details

Recent experimental results on ICF target implosions by Z-pinch radiation sources and their relevance to ICF ignition studies

Mehlhorn, Thomas A.; Leeper, Ramon J.; Macfarlane, Joseph J.; Matzen, M.K.; Nash, Thomas J.; Olson, Craig L.; Ruiz, Carlos L.; Schroen, D.G.; Slutz, Stephen A.; Mehlhorn, Thomas A.; Varnum, W.A.; Vesey, Roger A.; Bailey, James E.; Bennett, Guy R.; Chandler, Gordon A.; Cooper, Gary W.; Cuneo, M.E.

Inertial confinement fusion capsule implosions absorbing up to 35 kJ of x-rays from a {approx}220 eV dynamic hohlraum on the Z accelerator at Sandia National Laboratories have produced thermonuclear D-D neutron yields of (2.6 {+-} 1.3) x 10{sup 10}. Argon spectra confirm a hot fuel with Te {approx} 1 keV and n{sub e} {approx} (1-2) x 10{sup 23} cm{sup -3}. Higher performance implosions will require radiation symmetry control improvements. Capsule implosions in a {approx}70 eV double-Z-pinch-driven secondary hohlraum have been radiographed by 6.7 keV x-rays produced by the Z-beamlet laser (ZBL), demonstrating a drive symmetry of about 3% and control of P{sub 2} radiation asymmetries to {+-}2%. Hemispherical capsule implosions have also been radiographed in Z in preparation for future experiments in fast ignition physics. Z-pinch-driven inertial fusion energy concepts are being developed. The refurbished Z machine (ZR) will begin providing scaling information on capsule and Z-pinch in 2006. The addition of a short pulse capability to ZBL will enable research into fast ignition physics in the combination of ZR and ZBL-petawatt. ZR could provide a test bed to study NIF-relevant double-shell ignition concepts using dynamic hohlraums and advanced symmetry control techniques in the double-pinch hohlraum backlit by ZBL.

More Details

Scaling of high-mass tungsten-wire-array z-pinch discrete-wire implosion dynamics at 20 MA

Proposed for publication in Physical Review Letters.

Cuneo, M.E.; Yu, Edmund Y.; Garasi, Christopher J.; Oliver, Bryan V.; Aragon, Rafael A.; Bliss, David E.; Lazier, Steven E.; Mehlhorn, Thomas A.; Nielsen, D.S.; Sarkisov, Gennady S.; Cuneo, M.E.; Vesey, Roger A.; Wagoner, Tim C.; Chandler, Gordon A.; Waisman, Eduardo M.; Stygar, William A.; Nash, Thomas J.; Yu, Edmund Y.

Abstract not provided.

Z-pinch current-scaling experiments at 10[7] amps

Proposed for publication in Physical Review E.

Stygar, William A.; Matzen, M.K.; Mazarakis, Michael G.; McDaniel, Dillon H.; McGurn, John S.; Mckenney, John M.; Mix, L.P.; Muron, David J.; Ramirez, Juan J.; Ruggles, Larry R.; Stygar, William A.; Seamen, Johann F.; Simpson, Walter W.; Speas, Christopher S.; Spielman, Rick B.; Struve, Kenneth W.; Vesey, Roger A.; Wagoner, Tim C.; Gilliland, Terrance L.; Bennett, Guy R.; Ives, Harry C.; Jobe, Daniel O.; Lazier, Steven E.; Mills, Jerry A.; Mulville, Thomas D.; Pyle, John H.; Romero, Tobias M.; Seamen, Johann F.; Serrano, Jason D.; Smelser, Ruth S.; Fehl, David L.; Cuneo, M.E.; Bailey, James E.; Bliss, David E.; Chandler, Gordon A.; Leeper, Ramon J.

Abstract not provided.

Development and characterization of a Z-pinch-driven hohlraum high-yield inertial confinement fusion target concept

Physics of Plasmas

Cuneo, M.E.; Vesey, Roger A.; Porter, John L.; Chandler, Gordon A.; Fehl, David L.; Gilliland, Terrance L.; Hanson, David L.; McGurn, John S.; Reynolds, Paul G.; Ruggles, Larry R.; Seamen, Hans; Spielman, Rick B.; Struve, Kenneth W.; Stygar, William A.; Simpson, Walter W.; Torres, Jose A.; Wenger, D.F.; Hammer, James H.; Rambo, Peter W.; Peterson, Darrell L.; Idzorek, George C.

Initial experiments to study the Z-pinch-driven hohlraum high-yield inertial confinement fusion (ICF) concept of Hammer, Tabak, and Porter [Hammer et al., Phys. Plasmas 6, 2129 (1999)] are described. The relationship between measured pinch power, hohlraum temperature, and secondary hohlraum coupling ("hohlraum energetics") is well understood from zero-dimensional semianalytic, and two-dimensional view factor and radiation magnetohydrodynamics models. These experiments have shown the highest x-ray powers coupled to any Z-pinch-driven secondary hohlraum (26±5 TW), indicating the concept could scale to fusion yields of >200 MJ. A novel, single-sided power feed, double-pinch driven secondary that meets the pinch simultaneity requirements for polar radiation symmetry has also been developed. This source will permit investigation of the pinch power balance and hohlraum geometry requirements for ICF relevant secondary radiation symmetry, leading to a capsule implosion capability on the Z accelerator [Spielman et al., Phys. Plasmas 5, 2105 (1998)]. © 2001 American Institute of Physics.

More Details

O-d energetics scaling models for Z-pinch-driven hohlraums

Lasers and Particle Beams

Cuneo, M.E.; Vesey, Roger A.

Wire array Z-pinches on the Z accelerator provide the most intense laboratory source of soft x-rays in the world. The unique combination of a highly-Planckian radiation source with high x-ray production efficiency (15% wall plug), large x-ray powers and energies ( >150 TW, {ge}1 MJ in 7 ns), large characteristic hohlraum volumes (0.5 to >10 cm{sup 3}), and long pulse-lengths (5 to 20 ns) may make Z-pinches a good match to the requirements for driving high-yield scale ICF capsules with adequate radiation symmetry and margin. The Z-pinch driven hohlraum approach of Hammer and Porter [Phys.Plasmas, 6, 2129(1999)] may provide a conservative and robust solution to the requirements for high yield, and is currently being studied on the Z accelerator. This paper describes a multiple region, 0-d hohlraum energetic model for Z-pinch driven hohlraums in four configurations. The authors observe consistency between the models and the measured x-ray powers and hohlraum wall temperatures to within {+-}20% in flux, for the four configurations.

More Details

Scaling and optimization of the radiation temperature in dynamic hohlraums

Physics of Plasmas

Slutz, Stephen A.; Douglas, Melissa R.; Lash, Joel S.; Vesey, Roger A.; Chandler, Gordon A.; Nash, Thomas J.; Derzon, Mark S.

The authors have constructed a quasi-analytic model of the dynamic hohlraum. Solutions only require a numerical root solve, which can be done very quickly. Results of the model are compared to both experiments and full numerical simulations with good agreement. The computational simplicity of the model allows one to find the behavior of the hohlraum temperature as a function the various parameters of the system and thus find optimum parameters as a function of the driving current. The model is used to investigate the benefits of ablative standoff and axial convergence.

More Details
Results 101–126 of 126
Results 101–126 of 126