Publications

Results 26–50 of 126
Skip to search filters

Exploring magnetized liner inertial fusion with a semi-analytic model

McBride, Ryan D.; Slutz, Stephen A.; Sinars, Daniel S.; Vesey, Roger A.; Gomez, Matthew R.; Sefkow, Adam B.; Hansen, Stephanie B.; Cochrane, Kyle C.; Schmit, Paul S.; Knapp, Patrick K.; Geissel, Matthias G.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Martin, Matthew; Awe, Thomas J.; Rovang, Dean C.; Lamppa, Derek C.; Peterson, Kyle J.; Rochau, G.A.; Porter, John L.; Stygar, William A.; Cuneo, M.E.

Abstract not provided.

Laser-Fuel Coupling Studies for MagLIF with Z-Beamlet

Geissel, Matthias G.; Harvey-Thompson, Adam J.; Awe, Thomas J.; Campbell, Michael E.; Gomez, Matthew R.; Harding, Eric H.; Jennings, Christopher A.; Kimmel, Mark W.; Knapp, Patrick K.; Lewis, Sean M.; McBride, Ryan D.; Peterson, Kyle J.; Schollmeier, Marius; Schmit, Paul S.; Sefkow, Adam B.; Shores, Jonathon S.; Sinars, Daniel S.; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Vesey, Roger A.; Porter, John L.

Abstract not provided.

Fusion-Neutron Measurements for Magnetized Liner Inertial Fusion Experiments on the Z Accelerator

Hahn, Kelly D.; Chandler, Gordon A.; Ruiz, Carlos L.; Cooper, Gary W.; Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel S.; Hansen, Stephanie B.; Knapp, Patrick K.; Schmit, Paul S.; Harding, Eric H.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias G.; Rovang, Dean C.; Torres, Jose A.; Bur, James A.; Cuneo, M.E.; Glebov, V.Yu.; Harvey-Thompson, Adam J.; Herrmann, M.C.H.; Hess, Mark H.; Johns, Owen J.; Jones, Brent M.; Lamppa, Derek C.; Martin, Matthew; McBride, Ryan D.; Peterson, Kyle J.; Porter, John L.; Reneker, Joseph R.; Robertson, Grafton K.; Rochau, G.A.; Savage, Mark E.; Smith, Ian C.; Styron, Jedediah D.; Vesey, Roger A.

Abstract not provided.

Exploring magnetized liner inertial fusion with a semi-analytic model

McBride, Ryan D.; Slutz, Stephen A.; Sinars, Daniel S.; Vesey, Roger A.; Gomez, Matthew R.; Sefkow, Adam B.; Hansen, Stephanie B.; Cochrane, Kyle C.; Rovang, Dean C.; Lamppa, Derek C.; Geissel, Matthias G.; Harvey-Thompson, Adam J.; Schmit, Paul S.; Knapp, Patrick K.; Awe, Thomas J.; Jennings, Christopher A.; Martin, Matthew; Peterson, Kyle J.; Rochau, G.A.; Porter, John L.; Stygar, William A.; Cuneo, M.E.

Abstract not provided.

LEH Transmission and Early Fuel Heating for MagLIF with Z-Beamlet

Geissel, Matthias G.; Harvey-Thompson, Adam J.; Awe, Thomas J.; Campbell, Edward M.; Gomez, Matthew R.; Harding, Eric H.; Jennings, Christopher A.; Kimmel, Mark W.; Knapp, Patrick K.; Lewis, Sean M.; McBride, Ryan D.; Peterson, Kyle J.; Schollmeier, Marius; Schmit, Paul S.; Sefkow, Adam B.; Shores, Jonathon S.; Sinars, Daniel S.; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Stahoviak, J.W.S.; Vesey, Roger A.; Porter, John L.

Abstract not provided.

Magnetized Liner Inertial Fusion on the Z Pulsed-Power Accelerator

McBride, Ryan D.; Sinars, Daniel S.; Slutz, Stephen A.; Gomez, Matthew R.; Sefkow, Adam B.; Hansen, Stephanie B.; Awe, Thomas J.; Peterson, Kyle J.; Knapp, Patrick K.; Schmit, Paul S.; Rovang, Dean C.; Geissel, Matthias G.; Vesey, Roger A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Martin, Matthew; Lemke, Raymond W.; Hahn, Kelly D.; Harding, Eric H.; Cuneo, M.E.; Porter, John L.; Rochau, G.A.; Stygar, William A.

Abstract not provided.

Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments

Physics of Plasmas

Gomez, Matthew R.; Slutz, S.A.; Sefkow, Adam B.; Hahn, K.D.; Hansen, Stephanie B.; Knapp, P.F.; Schmit, Paul S.; Ruiz, Carlos L.; Sinars, Daniel S.; Harding, Eric H.; Jennings, C.A.; Awe, T.J.; Geissel, Matthias G.; Rovang, Dean C.; Smith, Ian C.; Chandler, Gordon A.; Cooper, Gary W.; Cuneo, M.E.; Harvey-Thompson, Adam J.; Herrmann, M.C.; Hess, Mark H.; Lamppa, Derek C.; Martin, M.R.; McBride, Ryan D.; Peterson, Kyle J.; Porter, John L.; Rochau, G.A.; Savage, Mark E.; Schroen, D.G.; Stygar, William A.; Vesey, Roger A.

The magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100-ns Z machine, the 2.5-kJ, 1 TW Z Beamlet laser, and the 10-T Applied B-field on Z system. Despite an estimated implosion velocity of only 70-km/s in these experiments, electron and ion temperatures at stagnation were as high as 3-keV, and thermonuclear deuterium-deuterium neutron yields up to 2-×-1012 have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6-8-mm) and lasted approximately 2-ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2-0.4-g/cm3. In these experiments, up to 5-×-1010 secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1-2-mg/cm2, this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1-keV and primary deuterium-deuterium yields greater than 1010. An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source.

More Details

Recent Progress and Future Potential of Magnetized Liner Inertial Fusion (MagLIF)

Sandia journal manuscript; Not yet accepted for publication

Slutz, Stephen A.; Gomez, Matthew R.; Sefkow, Adam B.; Sinars, Daniel S.; Hahn, Kelly D.; Hansen, Stephanie B.; Harding, Eric H.; Knapp, Patrick K.; Schmit, Paul S.; Jennings, Christopher A.; Awe, Thomas J.; Herrmann, M.C.H.; Hess, Mark H.; Johns, Owen J.; Lamppa, Derek C.; Martin, Matthew; McBride, Ryan D.; Geissel, Matthias G.; Rovang, Dean C.; Chandler, Gordon A.; Cooper, Gary W.; Cuneo, M.E.; Harvey-Thompson, Adam J.; Peterson, Kyle J.; Porter, John L.; Robertson, Grafton K.; Rochau, G.A.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Stygar, William A.; Vesey, Roger A.

The standard approaches to inertial confinement fusion (ICF) rely on implosion velocities greater than 300 km/s and spherical convergence to achieve the high fuel temperatures (T > 4 keV) and areal densities (ρr > 0.3 g/cm2) required for ignition1. Such high velocities are achieved by heating the outside surface of a spherical capsuleeither directly with a large number of laser beams (Direct Drive) or with x-rays generated within a hohlraum (Indirect Drive). A much more energetically efficient approach is to use the magnetic pressure generated by a pulsed power machine to directly drive an implosion. In this approach 5-10% of the stored energy can be converted to the implosion of a metal tube generally referred to as a “liner”. However, the implosion velocity is not very high 70-100 km/s and the convergence is cylindrical (rather than spherical) making it more difficult to achieve the high temperatures and areal densities needed for ignition.

More Details

Voltage measurements at the vacuum post-hole convolute of the Z pulsed-power accelerator

Physical Review Special Topics - Accelerators and Beams

Waisman, E.M.; McBride, Ryan D.; Cuneo, M.E.; Wenger, D.F.; Fowler, W.E.; Johnson, W.A.; Basilio, Lorena I.; Coats, Rebecca S.; Jennings, C.A.; Sinars, Daniel S.; Vesey, Roger A.; Jones, Brent M.; Ampleford, David A.; Lemke, Raymond W.; Martin, M.R.; Schrafel, P.C.; Lewis, S.A.; Moore, James M.; Savage, Mark E.; Stygar, William A.

Presented are voltage measurements taken near the load region on the Z pulsed-power accelerator using an inductive voltage monitor (IVM). Specifically, the IVM was connected to, and thus monitored the voltage at, the bottom level of the accelerator's vacuum double post-hole convolute. Additional voltage and current measurements were taken at the accelerator's vacuum-insulator stack (at a radius of 1.6 m) by using standard D-dot and B-dot probes, respectively. During postprocessing, the measurements taken at the stack were translated to the location of the IVM measurements by using a lossless propagation model of the Z accelerator's magnetically insulated transmission lines (MITLs) and a lumped inductor model of the vacuum post-hole convolute. Across a wide variety of experiments conducted on the Z accelerator, the voltage histories obtained from the IVM and the lossless propagation technique agree well in overall shape and magnitude. However, large-amplitude, high-frequency oscillations are more pronounced in the IVM records. It is unclear whether these larger oscillations represent true voltage oscillations at the convolute or if they are due to noise pickup and/or transit-time effects and other resonant modes in the IVM. Results using a transit-time-correction technique and Fourier analysis support the latter. Regardless of which interpretation is correct, both true voltage oscillations and the excitement of resonant modes could be the result of transient electrical breakdowns in the post-hole convolute, though more information is required to determine definitively if such breakdowns occurred. Despite the larger oscillations in the IVM records, the general agreement found between the lossless propagation results and the results of the IVM shows that large voltages are transmitted efficiently through the MITLs on Z. These results are complementary to previous studies [R.D. McBride et al., Phys. Rev. ST Accel. Beams 13, 120401 (2010)] that showed efficient transmission of large currents through the MITLs on Z. Taken together, the two studies demonstrate the overall efficient delivery of very large electrical powers through the MITLs on Z.

More Details

Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion

Physical Review Letters

Gomez, Matthew R.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias G.; Rovang, Dean C.; Chandler, Gordon A.; Cuneo, M.E.; Harvey-Thompson, Adam J.; Herrmann, Mark H.; Hess, Mark H.; Slutz, Stephen A.; Johns, Owen J.; Lamppa, Derek C.; Martin, Matthew; McBride, Ryan D.; Peterson, Kyle J.; Robertson, Grafton K.; Rochau, G.A.; Ruiz, Carlos L.; Savage, Mark E.; Sefkow, Adam B.; Smith, Ian C.; Stygar, William A.; Vesey, Roger A.; Sinars, Daniel S.; Hahn, Kelly D.; Hansen, Stephanie B.; Harding, Eric H.; Knapp, Patrick K.; Schmit, Paul S.

This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed axial magnetic field of 10 T is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA current with 100 ns rise time on the Z facility. Despite a predicted peak implosion velocity of only 70 km/s, the fuel reaches a stagnation temperature of approximately 3 keV, with Te ≈ Ti, and produces up to 2e12 thermonuclear DD neutrons. In this study, X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 μm over a 6 mm height and lasting approximately 2 ns. The number of secondary deuterium-tritium neutrons observed was greater than 1010, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg/cm2.

More Details

Demonstration of fusion relevant conditions in Magnetized Liner Inertial Fusion experiments on the Z facility

Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel S.; Hahn, Kelly D.; Hansen, Stephanie B.; Harding, Eric H.; Knapp, Patrick K.; Schmit, Paul S.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias G.; Rovang, Dean C.; Chandler, Gordon A.; Cuneo, M.E.; Harvey-Thompson, Adam J.; Herrmann, Mark H.; Lamppa, Derek C.; Martin, Matthew; McBride, Ryan D.; Peterson, Kyle J.; Porter, John L.; Rochau, G.A.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Vesey, Roger A.

Abstract not provided.

Demonstration of fusion relevant conditions in Magnetized Liner Inertial Fusion Experiments on the Z Facility

Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel S.; Hahn, Kelly D.; Hansen, Stephanie B.; Harding, Eric H.; Knapp, Patrick K.; Schmit, Paul S.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias G.; Rovang, Dean C.; Chandler, Gordon A.; Cuneo, M.E.; Harvey-Thompson, Adam J.; Herrmann, Mark H.; Lamppa, Derek C.; Martin, Matthew; McBride, Ryan D.; Peterson, Kyle J.; Porter, John L.; Rochau, G.A.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Vesey, Roger A.

Abstract not provided.

Modified 3D-helix-like instability structure for imploding Z-pinch liners that are premagnetized with a uniform axial field

Awe, Thomas J.; Jennings, Christopher A.; McBride, Ryan D.; Cuneo, M.E.; Lamppa, Derek C.; Martin, Matthew; Rovang, Dean C.; Sinars, Daniel S.; Slutz, Stephen A.; Owen, Albert C.; Gomez, Matthew R.; Hansen, Stephanie B.; Harding, Eric H.; Herrmann, Mark H.; Jones, Michael J.; Knapp, Patrick K.; Mckenney, John M.; Peterson, Kyle J.; Robertson, Grafton K.; Rochau, G.A.; Savage, Mark E.; Schmit, Paul S.; Sefkow, Adam B.; Stygar, William A.; Vesey, Roger A.; Yu, Edmund Y.; Tomlinson, Kurt T.; Schroen, Diana G.

Abstract not provided.

Results Progress and Plans for Magnetized Liner Inertial Fusion (MagLIF) on Z

Peterson, Kyle J.; Slutz, Stephen A.; Sinars, Daniel S.; Sefkow, Adam B.; Gomez, Matthew R.; Awe, Thomas J.; Harvey-Thompson, Adam J.; Geissel, Matthias G.; Schmit, Paul S.; Smith, Ian C.; McBride, Ryan D.; Rovang, Dean C.; Knapp, Patrick K.; Hansen, Stephanie B.; Jennings, Christopher A.; Harding, Eric H.; Porter, John L.; Vesey, Roger A.; Blue, Brent B.; Schroen, Diana G.; Tomlinson, Kurt T.

Abstract not provided.

Results 26–50 of 126
Results 26–50 of 126