Publications

22 Results
Skip to search filters

Radiation oxidation of polypropylene: A solid-state 13C NMR study using selective isotopic labeling

Radiation Physics and Chemistry

Mowery, Daniel M.; Assink, Roger A.; Derzon, Dora K.; Klamo, Sara B.; Bernstein, Robert; Clough, Roger L.

Polypropylene samples, in which the three different carbon atoms along the chain were selectively labeled with carbon-13, were subjected to radiation under inert and air atmospheres, and to post-irradiation exposure in air at various temperatures. By using solid-state 13C NMR measurements at room temperature, we have been able to identify and quantify the oxidation products. The isotopic labeling provides insight into chemical reaction mechanisms, since oxidation products can be traced back to their positions of origin on the macromolecule. The major products include peroxides and alcohols, both formed at tertiary carbon sites along the chain. Other products include methyl ketones, acids, esters, peresters, and hemiketals formed from reaction at the tertiary carbon, together with in-chain ketones and esters from reaction at the secondary chain carbon. No evidence is found of products arising from reactions at the methyl side chain. Significant temperature-dependent differences are apparent; for example much higher yields of chain-end methyl ketones, which are the indicator product of chain scission, are generated for both elevated temperature irradiation and for post-irradiation treatment at elevated temperatures. Time-dependent plots of yields of the various oxidation products have been obtained under a wide range of conditions, including the post-irradiation oxidation of a sample at room temperature in air that has been monitored for 2 years. Radiation-oxidation products of polypropylene are contrasted to products measured for 13C-labeled polyethylene in an earlier investigation: the peroxides formed in irradiated polypropylene are remarkably longer lived, the non-peroxidic products are significantly different, and the overall ratios of oxidation products in polypropylene change relatively little as a function of the extent of oxidation. © 2006 Elsevier Ltd. All rights reserved.

More Details

Initiation of polymer degradation via transfer of infectious species

Polymer Degradation and Stability

Celina, M.; Clough, Roger L.; Jones, Gary D.

A novel dual stage chemiluminescence detection system incorporating individually controlled hot stages has been developed and applied to probe for material interaction effects during polymer degradation. Utilization of this system has resulted in experimental confirmation for the first time that in an oxidizing environment a degrading polymer A (in this case polypropylene, PP) is capable of infecting a different polymer B (in this case polybutadiene, HTPB) over a relatively large distance. In the presence of the infectious degrading polymer A, the thermal degradation of polymer B is observed over a significantly shorter time period. Consistent with infectious volatiles from material A initiating the degradation process in material B it was demonstrated that traces (micrograms) of a thermally sensitive peroxide in the vicinity of PP could induce degradation remotely. This observation documents cross-infectious phenomena between different polymers and has major consequences for polymer interactions, understanding fundamental degradation processes and long-term aging effects under combined material exposures.

More Details

Piezoelectric PVDF materials performance and operation limits in space environments

Materials Research Society Symposium Proceedings

Celina, Mathew C.; Dargaville, Tim R.; Chaplya, Pavel M.; Clough, Roger L.

Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes. Dimensional adjustments of adaptive polymer films are achieved via charge deposition and require a detailed understanding of the piezoelectric material responses which are expected to suffer due to strong vacuum UV, γ-, X-ray, energetic particles and atomic oxygen under low earth orbit exposure conditions. The degradation of PVDF and its copolymers under various stress environments has been investigated. Initial radiation aging studies using γ- and e-beam irradiation have shown complex material changes with significant crosslinking, lowered melting and Curie points (where observable), effects on crystallinity, but little influence on overall piezoelectric properties. Surprisingly, complex aging processes have also been observed in elevated temperature environments with annealing phenomena and cyclic stresses resulting in thermal depoling of domains. Overall materials performance appears to be governed by a combination of chemical and physical degradation processes. Molecular changes are primarily induced via radiative damage, and physical damage from temperature and AO exposure is evident as depoling and surface erosion. Major differences between individual copolymers have been observed providing feedback on material selection strategies. © 2045 Materials Research Society.

More Details

Remote inhibition of polymer degradation

Proposed for publication in Polymer.

Clough, Roger L.

Polymer degradation has been explored on the basis of synergistic infectious and inhibitive interaction between separate materials. A dual stage chemiluminescence detection system with individually controlled hot stages was applied to probe for interaction effects during polymer degradation in an oxidizing environment. Experimental confirmation was obtained that volatile antioxidants can be transferred over a relatively large distance. The thermal degradation of a polypropylene (PP) sample receiving traces of inhibitive antioxidants from a remote source is delayed. Similarly, volatiles from two stabilized elastomers were also capable of retarding a degradation process remotely. This observation demonstrates inhibitive cross-talk as a novel interactive phenomenon between different polymers and is consequential for understanding general polymer interactions, fundamental degradation processes and long-term aging effects of multiple materials in a single environment.

More Details

Solid-state 13C NMR investigation of the oxidative degradation of selectively labeled polypropylene by thermal aging and γ-irradiation

Macromolecules

Mowery, Daniel M.; Assink, Roger A.; Derzon, Dora K.; Klamo, Sara B.; Clough, Roger L.; Bernstein, Robert

Unstabilized polypropylene (PP) films having selective 13C isotopic labeling were subjected to thermal aging at 50, 80, and 109 °C and to γ-irradiation at 24 and 80°C. The oxidized films were examined using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Dramatic differences were found in the type and distribution of oxidation products originating from the three carbon atom sites within the PP macromolecule (tertiary carbon, secondary carbon, and methyl side group). Most of the oxidation products that formed on the polymer chain originated through chemical reactions at the PP tertiary carbons. Under all of the aging conditions examined, tertiary peroxides (from the PP tertiary site) were the most abundant functional group produced. Also originating from the PP tertiary carbon were significant amounts of tertiary alcohols, together with several more minor products that included "chain-end" methyl ketones. No significant amount of peroxides or alcohols associated with the PP secondary carbon sites was detected. A substantial yield of carboxylate groups was identified (acids, esters, etc.). The majority of these originated from the PP secondary carbon site, from which other minor products also formed, including in-chain ketones. We found no measurable yield of oxidation products originating from reaction at the PP methyl group. Remarkably similar distributions of the major oxidation products were obtained for thermal aging at different temperatures, whereas the product distributions obtained for irradiation at the different temperatures exhibited significant differences. Time-dependent concentration plots have been obtained, which show the amounts of the various oxidation products originating at the different PP sites, as a function of the extent of material oxidation. © 2005 American Chemical Society.

More Details

Initiation of polymer degradation via transfer of infectious species

Proposed for publication in Nature.

Clough, Roger L.; Jones, Gary D.

A novel dual stage chemiluminescence detection system incorporating individually controlled hot stages has been developed and applied to probe for material interaction effects during polymer degradation. Utilization of this system has resulted in experimental confirmation for the first time that in an oxidizing environment a degrading polymer A (in this case polypropylene, PP) is capable of infecting a different polymer B (in this case polybutadiene, HTPB) over a relatively large distance. In the presence of the infectious degrading polymer A, the thermal degradation of polymer B is observed over a significantly shorter time period. Consistent with infectious volatiles from material A initiating the degradation process in material B it was demonstrated that traces (micrograms) of a thermally sensitive peroxide in the vicinity of PP could induce degradation remotely. This observation documents cross-infectious phenomena between different polymers and has major consequences for polymer interactions, understanding fundamental degradation processes and long-term aging effects under combined material exposures.

More Details

17O NMR investigation of oxidative degradation in polymers under γ-irradiation

Radiation Physics and Chemistry

Alam, Todd M.; Celina, Mathias C.; Assink, Roger A.; Clough, Roger L.; Gillen, Kenneth T.

The γ-irradiated-oxidation of pentacontane (C50H102) and the polymer polyisoprene was investigated as a function of oxidation level using 17O nuclear magnetic resonance (NMR) spectroscopy. It is demonstrated that by using 17O labeled O2 gas during the γ-irradiation process, details about the oxidative degradation mechanisms can be directly obtained from the analysis of the 17O NMR spectra. Production of carboxylic acids is the primary oxygen-containing functionality during the oxidation of pentacontane, while ethers and alcohols are the dominant oxidation product observed for polyisoprene. The formation of ester species during the oxidation process is very minor for both materials, with water also being produced in significant amounts during the radiolytic oxidation of polyisoprene. The ability to focus on the oxidative component of the degradation process using 17O NMR spectroscopy demonstrates the selectivity of this technique over more conventional approaches. © 2001 Elsevier Science Ltd.

More Details

Analysis of Hydroperoxides in solid Polyethylene by NMR and EPR Spectroscopy

Assink, Roger A.; Celina, Mathias C.; Alam, Todd M.; Clough, Roger L.; Gillen, Kenneth T.

The authors have shown that the hydroperoxide species in {gamma}-irradiated {sup 13}C-polyethylene can be directly observed by {sup 13}C MAS NMR spectroscopy. The experiment was performed without the need for special sample preparation such as chemical derivatization or dissolution. Annealing experiments were employed to study the thermal decomposition of the hydroperoxide species and to measure an activation energy of 98 kJ/mol. EPR spectroscopy suggests that residual polyenyl and alkylperoxy radicals are predominantly trapped in interracial or crystalline regions, while the peroxy radicals observed after UV-photolysis of hydroperoxides are in amorphous regions.

More Details

Aging analyses of aircraft wire insulation

Gillen, Kenneth T.; Clough, Roger L.; Celina, Mathias C.; Aubert, James H.; Malone, Gerard M.

Over the past two decades, Sandia has developed a variety of specialized analytical techniques for evaluating the long-term aging and stability of cable insulation and other related materials. These techniques have been applied to cable reliability studies involving numerous insulation types and environmental factors. This work has allowed the monitoring of the occurrence and progression of cable material deterioration in application environments, and has provided insights into material degradation mechanisms. It has also allowed development of more reliable lifetime prediction methodologies. As a part of the FAA program for intrusive inspection of aircraft wiring, they are beginning to apply a battery of techniques to assessing the condition of cable specimens removed from retired aircraft. It is anticipated that in a future part of this program, they may employ these techniques in conjunction with accelerated aging methodologies and models that the authros have developed and employed in the past to predict cable lifetimes. The types of materials to be assessed include 5 different wire types: polyimide, PVC/Glass/Nylon, extruded XL-polyalkene/PVDF, Poly-X, and XL-ETFE. This presentation provides a brief overview of the main techniques that will be employed in assessing the state of health of aircraft wire insulation. The discussion will be illustrated with data from their prior cable aging studies, highlighting the methods used and their important conclusions. A few of the techniques that they employ are widely used in aging studies on polymers, but others are unique to Sandia. All of their techniques are non-proprietary, and maybe of interest for use by others in terms of application to aircraft wiring analysis. At the end of this report is a list showing some leading references to papers that have been published in the open literature which provide more detailed information on the analytical techniques for elastomer aging studies. The first step in the investigation of aircraft wiring is to evaluate the applicability of their various techniques to aircraft cables, after which they expect to identify a limited subset of techniques which are appropriate for each of the major aircraft wiring types. The techniques of initial interest in the studies of aging aircraft wire are as follows: optical microscopy; mandrel bend test; tensile test/elongation at break; density measurements; modulus profiling/(spatially-resolved micro-hardness); oxygen induction time/oxygen induction temperature (by differential scanning calorimetry); solvent-swelling/gel fraction; infrared spectroscopy (with chemical derivatization as warranted); chemiluminescence; thermo-oxidative wear-out assessment; The first two techniques are the simplest and quickest to apply; those further down the list tend to be more information rich and in some cases more sensitive, but also generally more specialized and more time consuming to run. Accordingly, the procedure will be to apply the simplest tests for purposes of preliminary screening of large numbers of samples. For any given material type, it can be expected that only a limited number of the other techniques will prove to be useful, and therefore, the more specialized techniques will be used on a limited number of selected samples. Samples of aircraft wiring have begun to be released to the authors in late April; they include in this report some limited and preliminary data on these materials.

More Details
22 Results
22 Results