Publications

Results 26–34 of 34
Skip to search filters

Temperature imaging in nonpremixed flames by joint filtered Rayleigh and Raman scattering

Applied Optics

Kearney, Sean P.; Schefer, Robert W.; Beresh, Steven J.; Grasser, Thomas W.

Joint fuel Raman and filtered Rayleigh-scattering (FRS) imaging is demonstrated in a laminar methane-air diffusion flame. These experiments are, to our knowledge, the first reported extension of the FRS technique to nonpremixed combustion. This joint imaging approach allows for correction of the FRS images for the large variations in Rayleigh cross section that occur in diffusion flames and for a secondary measurement of fuel mole fraction. The temperature-dependent filtered Rayleigh cross sections are computed with a six-moment kinetic model for calculation of major-species Rayleigh-Brillouin line shapes and a flamelet-based model for physically judicious estimates of gas-phase chemical composition. Shot-averaged temperatures, fuel mole fractions, and fuel number densities from steady and vortex-strained diffusion flames stabilized on a Wolfhard-Parker slot burner are presented, and a detailed uncertainty analysis reveals that the FRS-measured temperatures are accurate to within ±4.5 to 6% of the local absolute temperature. © 2005 Optical Society of America.

More Details

Soot formation, transport, and radiation in unsteady diffusion flames : LDRD final report

Shaddix, Christopher R.; Williams, T.C.; Schefer, Robert W.; Jensen, Kirk A.; Suo-Anttila, Jill M.; Kearney, S.P.

Fires pose the dominant risk to the safety and security of nuclear weapons, nuclear transport containers, and DOE and DoD facilities. The thermal hazard from these fires primarily results from radiant emission from high-temperature flame soot. Therefore, it is necessary to understand the local transport and chemical phenomena that determine the distributions of soot concentration, optical properties, and temperature in order to develop and validate constitutive models for large-scale, high-fidelity fire simulations. This report summarizes the findings of a Laboratory Directed Research and Development (LDRD) project devoted to obtaining the critical experimental information needed to develop such constitutive models. A combination of laser diagnostics and extractive measurement techniques have been employed in both steady and pulsed laminar diffusion flames of methane, ethylene, and JP-8 surrogate burning in air. For methane and ethylene, both slot and coannular flame geometries were investigated, as well as normal and inverse diffusion flame geometries. For the JP-8 surrogate, coannular normal diffusion flames were investigated. Soot concentrations, polycyclic aromatic hydrocarbon (PAH) laser-induced fluorescence (LIF) signals, hydroxyl radical (OH) LIF, acetylene and water vapor concentrations, soot zone temperatures, and the velocity field were all successfully measured in both steady and unsteady versions of these various flames. In addition, measurements were made of the soot microstructure, soot dimensionless extinction coefficient (&), and the local radiant heat flux. Taken together, these measurements comprise a unique, extensive database for future development and validation of models of soot formation, transport, and radiation.

More Details

Filtered Rayleigh scattering diagnostic for multi-parameter thermal-fluids measurements : LDRD final report

Kearney, S.P.; Kearney, S.P.; Beresh, Steven J.; Schefer, Robert W.; Grasser, Thomas W.

Simulation-based life-cycle-engineering and the ASCI program have resulted in models of unprecedented size and fidelity. The validation of these models requires high-resolution, multi-parameter diagnostics. Within the thermal-fluids disciplines, the need for detailed, high-fidelity measurements exceeds the limits of current engineering sciences capabilities and severely tests the state of the art. The focus of this LDRD is the development and application of filtered Rayleigh scattering (FRS) for high-resolution, nonintrusive measurement of gas-phase velocity and temperature. With FRS, the flow is laser-illuminated and Rayleigh scattering from naturally occurring sources is detected through a molecular filter. The filtered transmission may be interpreted to yield point or planar measurements of three-component velocities and/or thermodynamic state. Different experimental configurations may be employed to obtain compromises between spatial resolution, time resolution, and the quantity of simultaneously measured flow variables. In this report, we present the results of a three-year LDRD-funded effort to develop FRS combustion thermometry and Aerosciences velocity measurement systems. The working principles and details of our FRS opto-electronic system are presented in detail. For combustion thermometry we present 2-D, spatially correlated FRS results from nonsooting premixed and diffusion flames and from a sooting premixed flame. The FRS-measured temperatures are accurate to within {+-}50 K (3%) in a premixed CH4-air flame and within {+-}100 K for a vortex-strained diluted CH4-air diffusion flame where the FRS technique is severely tested by large variation in scattering cross section. In the diffusion flame work, FRS has been combined with Raman imaging of the CH4 fuel molecule to correct for the local light scattering properties of the combustion gases. To our knowledge, this is the first extension of FRS to nonpremixed combustion and the first use of joint FRS-Raman imaging. FRS has been applied to a sooting C2H4-air flame and combined with LII to assess the upper sooting limit where FRS may be utilized. The results from this sooting flame show FRS temperatures has potential for quantitative temperature imaging for soot volume fractions of order 0.1 ppm. FRS velocity measurements have been performed in a Mach 3.7 overexpanded nitrogen jet. The FRS results are in good agreement with expected velocities as predicted by inviscid analysis of the jet flowfield. We have constructed a second FRS opto-electronic system for measurements at Sandia's hypersonic wind tunnel. The details of this second FRS system are provided here. This facility is currently being used for velocity characterization of these production hypersonic facilities.

More Details

Temperature imaging of vortex-flame interaction by filtered Rayleigh scattering

American Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD

Kearney, S.P.; Schefer, Robert W.; Beresh, Steven J.; Grasser, Thomas W.

This paper describes the application of a filtered-Rayleigh-scattering (FRS) instrument for nonintrusive temperature imaging in a vortex-driven diffusion flame. The FRS technique provides quantitative, spatially correlated temperature data without the flow intrusion or time lag associated with physical probes. Use of a molecular iodine filter relaxes the requirement for clean, particulate-free flowfields and offers the potential for imaging near walls, test section windows and in sooty flames, all of which are precluded in conventional Rayleigh imaging, where background interference from these sources typically overwhelms the weak molecular scattering signal. For combustion applications, FRS allows for full-field temperature imaging without chemical seeding of the flowfield, which makes FRS an attractive alternative to other laser-based imaging methods such as planar laser-induced fluorescence (PLIF). In this work, the details of our FRS imaging system are presented and temperature measurements from an acoustically forced diffusion flame are provided. The local Rayleigh cross-section is corrected using Raman imaging measurements of the methane fuel molecule, which are then correlated to other major species using a laminar flamelet approach. To our knowledge, this is the first report of joint Raman/FRS imaging for nonpremixed combustion. Measurements are presented from flames driven at 7.5 Hz, where a single vortex stretches the flame, and at 90 Hz, where two consecutive vortices interact to cause a repeatable strain-induced flame-quenching event.

More Details
Results 26–34 of 34
Results 26–34 of 34