Publications

Results 51–75 of 109
Skip to search filters

Understanding H isotope adsorption and absorption of Al-alloys using modeling and experiments (LDRD: #165724)

Ward, Donald K.; Zhou, Xiaowang Z.; Karnesky, Richard A.; Kolasinski, Robert K.; Foster, Michael E.; Thurmer, Konrad T.; Chao, Paul C.; Epperly, Ethan N.; Zimmerman, Jonathan A.; Wong, Bryan M.

Current austenitic stainless steel storage reservoirs for hydrogen isotopes (e.g. deuterium and tritium) have performance and operational life-limiting interactions (e.g. embrittlement) with H-isotopes. Aluminum alloys (e.g.AA2219), alternatively, have very low H-isotope solubilities, suggesting high resistance towards aging vulnerabilities. This report summarizes the work performed during the life of the Lab Directed Research and Development in the Nuclear Weapons investment area (165724), and provides invaluable modeling and experimental insights into the interactions of H isotopes with surfaces and bulk AlCu-alloys. The modeling work establishes and builds a multi-scale framework which includes: a density functional theory informed bond-order potential for classical molecular dynamics (MD), and subsequent use of MD simulations to inform defect level dislocation dynamics models. Furthermore, low energy ion scattering and thermal desorption spectroscopy experiments are performed to validate these models and add greater physical understanding to them.

More Details

A multi-technique analysis of deuterium trapping and near-surface precipitate growth in plasma-exposed tungsten

Journal of Applied Physics

Kolasinski, Robert K.; Shimada, M.; Oya, Y.; Buchenauer, D.A.; Chikada, T.; Cowgill, D.F.; Donovan, D.C.; Friddle, R.W.; Michibayashi, K.; Sato, M.

In this work, we examine how deuterium becomes trapped in plasma-exposed tungsten and forms near-surface platelet-shaped precipitates. How these bubbles nucleate and grow, as well as the amount of deuterium trapped within, is crucial for interpreting the experimental database. Here, we use a combined experimental/theoretical approach to provide further insight into the underlying physics. With the Tritium Plasma Experiment, we exposed a series of ITER-grade tungsten samples to high flux D plasmas (up to 1.5 × 1022m-2s-1) at temperatures ranging between 103 and 554 °C. Retention of deuterium trapped in the bulk, assessed through thermal desorption spectrometry, reached a maximum at 230 °C and diminished rapidly thereafter for T > 300 °C. Post-mortem examination of the surfaces revealed non-uniform growth of bubbles ranging in diameter between 1 and 10 μm over the surface with a clear correlation with grain boundaries. Electron back-scattering diffraction maps over a large area of the surface confirmed this dependence; grains containing bubbles were aligned with a preferred slip vector along the <111> directions. Focused ion beam profiles suggest that these bubbles nucleated as platelets at depths of 200 nm-1 μm beneath the surface and grew as a result of expansion of sub-surface cracks. To estimate the amount of deuterium trapped in these defects relative to other sites within the material, we applied a continuum-scale treatment of hydrogen isotope precipitation. In addition, we propose a straightforward model of near-surface platelet expansion that reproduces bubble sizes consistent with our measurements. For the tungsten microstructure considered here, we find that bubbles would only weakly affect migration of D into the material, perhaps explaining why deep trapping was observed in prior studies with plasma-exposed neutron-irradiated specimens. We foresee no insurmountable issues that would prevent the theoretical framework developed here from being extended to a broader range of systems where precipitation of insoluble gases in ion beam or plasma-exposed metals is of interest.

More Details

Analysis of hydrogen adsorption and surface binding configuration on tungsten using direct recoil spectrometry

Journal of Nuclear Materials

Kolasinski, Robert K.; Hammond, K.D.; Whaley, Josh A.; Buchenauer, D.A.; Wirth, B.D.

Abstract In this work, we apply low energy ion beam analysis to examine directly how the adsorbed hydrogen concentration and binding configuration on W(1 0 0) depend on temperature. We exposed the tungsten surface to fluxes of both atomic and molecular H and D. We then probed the H isotopes adsorbed along different crystal directions using 1-2 keV Ne+ ions. At saturation coverage, H occupies two-fold bridge sites on W(1 0 0) at 25°C. The H coverage dramatically changes the behavior of channeled ions, as does reconstruction of the surface W atoms. For the exposure conditions examined here, we find that surface sites remain populated with H until the surface temperature reaches 200°C. After this point, we observe H rapidly desorbing until only a residual concentration remains at 450°C. Development of an efficient atomistic model that accurately reproduces the experimental ion energy spectra and azimuthal variation of recoiled H is underway.

More Details
Results 51–75 of 109
Results 51–75 of 109