Design & Evaluation of a Hybrid Switched Capacitor Circuit with Wide-Bandgap Devices for Compact MVDC PV Power Conversion
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
ECS Journal of Solid State Science and Technology
Predicted lateral power device performance as a function of alloy composition is characterized by a standard lateral device figure-of-merit (LFOM) that depends on mobility, critical electric field, and sheet carrier density. The paper presents calculations of AlGaN electron mobility in lateral devices such as HEMTs across the entire alloy composition range. Alloy scattering and optical polar phonon scattering are the dominant mechanisms limiting carrier mobility. Due to the significant degradation of mobility from alloy scattering, at room temperature Al fractions greater than about 85% are required for improved LFOM relative to GaN using a conservative sheet charge density of 1 × 1013 cm−2. However, at higher temperatures at which AlGaN power devices are anticipated to operate, this “breakeven” composition decreases to about 65% at 500 K, for example. For high-frequency applications, the Johnson figure-of-merit (JFOM) is the relevant metric to compare potential device performance across materials platforms. At room temperature, the JFOM for AlGaN alloys is predicted to surpass that of GaN for Al fractions greater than about 40%.
ECS Journal of Solid State Science and Technology
"Ultra" wide-bandgap semiconductors are an emerging class of materials with bandgaps greater than that of gallium nitride (EG >3.4 eV) that may ultimately benefit a wide range of applications, including switching power conversion, pulsed power, RF electronics, UV optoelectronics, and quantum information. This paper describes the progress made to date at Sandia National Laboratories to develop one of these materials, aluminum gallium nitride, targeted toward high-power devices. The advantageous material properties of AlGaN are reviewed, questions concerning epitaxial growth and defect physics are covered, and the processing and performance of vertical- and lateral-geometry devices are described. The paper concludes with an assessment of the outlook for AlGaN, including outstanding research opportunities and a brief discussion of other potential applications.
Abstract not provided.
WiPDA 2016 - 4th IEEE Workshop on Wide Bandgap Power Devices and Applications
The effects of paralleling low-current vertical Gallium Nitride (v-GaN) diodes in a custom power module are reported. Four paralleled v-GaN diodes were demonstrated to operate in a buck converter at 1.3 Apeak (792 mArms) at 240 V and 15 kHz switching frequency. Additionally, high-fidelity SPICE simulations demonstrate the effects of device parameter variation on power sharing in a power module. The device parameters studied were found to have a sub-linear relationship with power sharing, indicating a relaxed need to bin parts for paralleling. This result is very encouraging for power electronics based on low-current v-GaN and demonstrates its potential for use in high-power systems.
WiPDA 2016 - 4th IEEE Workshop on Wide Bandgap Power Devices and Applications
The switching characteristics of vertical Gallium Nitride (v-GaN) diodes grown on GaN substrates are reported. v-GaN diodes were tested in a Double-Pulse Test Circuit (DPTC) and compared to test results for SiC Schottky Barrier Diodes (SBDs) and Si PiN diodes. The reported switching characteristics show that GaN diodes, like SiC SBDs, exhibit nearly negligible reverse recovery current compared to traditional Si PiN diodes. The reverse recovery for the v-GaN PiN diodes is limited by parasitics in the DPTC, precluding extraction of a meaningful recovery time. These results are very encouraging for power electronics based on v-GaN and demonstrate the potential for very fast, low-loss switching for these devices.
Journal of Vacuum Science and Technology. A, Vacuum, Surfaces and Films
Varying atomic ratios in compound semiconductors is well known to have large effects on the etching properties of the material. The use of thin device barrier layers, down to 25 nm, adds to the fabrication complexity by requiring precise control over etch rates and surface morphology. The effects of bias power and gas ratio of BCl3 to Cl2 for inductively coupled plasma etching of high Al content AlGaN were contrasted with AlN in this study for etch rate, selectivity, and surface morphology. Etch rates were greatly affected by both bias power and gas chemistry. Here we detail the effects of small variations in Al composition for AlGaN and show substantial changes in etch rate with regards to bias power as compared to AlN.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Applied Physics Letters
Electrical performance and characterization of deep levels in vertical GaN P-i-N diodes grown on low threading dislocation density (∼104 - 106cm-2) bulk GaN substrates are investigated. The lightly doped n drift region of these devices is observed to be highly compensated by several prominent deep levels detected using deep level optical spectroscopy at Ec-2.13, 2.92, and 3.2 eV. A combination of steady-state photocapacitance and lighted capacitance-voltage profiling indicates the concentrations of these deep levels to be Nt = 3 × 1012, 2 × 1015, and 5 × 1014cm-3, respectively. The Ec-2.92 eV level is observed to be the primary compensating defect in as-grown n-type metal-organic chemical vapor deposition GaN, indicating this level acts as a limiting factor for achieving controllably low doping. The device blocking voltage should increase if compensating defects reduce the free carrier concentration of the n drift region. Understanding the incorporation of as-grown and native defects in thick n-GaN is essential for enabling large VBD in the next-generation wide-bandgap power semiconductor devices. Thus, controlling the as-grown defects induced by epitaxial growth conditions is critical to achieve blocking voltage capability above 5 kV.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.