Concentrating Photo-Voltaic Systems Using Micro-Optics
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Decisions on material selections for electronics packaging can be quite complicated by the need to balance the criteria to withstand severe impacts yet survive deep thermal cycles intact. Many times, material choices are based on historical precedence perhaps ignorant of whether those initial choices were carefully investigated or whether the requirements on the new component match those of previous units. The goal of this program focuses on developing both increased intuition for generic packaging guidelines and computational methodologies for optimizing packaging in specific components. Initial efforts centered on characterization of classes of materials common to packaging strategies and computational analyses of stresses generated during thermal cycling to identify strengths and weaknesses of various material choices. Future studies will analyze the same example problems incorporating the effects of curing stresses as needed and analyzing dynamic loadings to compare trends with the quasi-static conclusions.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in the Journal of Adhesion.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Polymers and fiber-reinforced polymer matrix composites play an important role in many Defense Program applications. Recently an advanced nonlinear viscoelastic model for polymers has been developed and incorporated into ADAGIO, Sandia's SIERRA-based quasi-static analysis code. Standard linear elastic shell and continuum models for fiber-reinforced polymer-matrix composites have also been added to ADAGIO. This report details the use of these models for advanced adhesive joint and composites simulations carried out as part of an Advanced Simulation and Computing Advanced Deployment (ASC AD) project. More specifically, the thermo-mechanical response of an adhesive joint when loaded during repeated thermal cycling is simulated, the response of some composite rings under internal pressurization is calculated, and the performance of a composite container subjected to internal pressurization, thermal loading, and distributed mechanical loading is determined. Finally, general comparisons between the continuum and shell element approaches for modeling composites using ADAGIO are given.
Proposed for publication in Journal of Polymer Science - Polymer Physics.
Abstract not provided.
Proposed for publication in Journal of Polymer Science B - Polymer Physics.
Abstract not provided.
Proposed for publication in Polymer.
Abstract not provided.
Polymer stresses around sharp corners and in constrained geometries of encapsulated components can generate cracks leading to system failures. Often, analysts use maximum stresses as a qualitative indicator for evaluating the strength of encapsulated component designs. Although this approach has been useful for making relative comparisons screening prospective design changes, it has not been tied quantitatively to failure. Accurate failure models are needed for analyses to predict whether encapsulated components meet life cycle requirements. With Sandia's recently developed nonlinear viscoelastic polymer models, it has been possible to examine more accurately the local stress-strain distributions in zones of likely failure initiation looking for physically based failure mechanisms and continuum metrics that correlate with the cohesive failure event. This study has identified significant differences between rubbery and glassy failure mechanisms that suggest reasonable alternatives for cohesive failure criteria and metrics. Rubbery failure seems best characterized by the mechanisms of finite extensibility and appears to correlate with maximum strain predictions. Glassy failure, however, seems driven by cavitation and correlates with the maximum hydrostatic tension. Using these metrics, two three-point bending geometries were tested and analyzed under variable loading rates, different temperatures and comparable mesh resolution (i.e., accuracy) to make quantitative failure predictions. The resulting predictions and observations agreed well suggesting the need for additional research. In a separate, additional study, the asymptotically singular stress state found at the tip of a rigid, square inclusion embedded within a thin, linear elastic disk was determined for uniform cooling. The singular stress field is characterized by a single stress intensity factor K{sub a} and the applicable K{sub a} calibration relationship has been determined for both fully bonded and unbended inclusions. A lack of interfacial bonding has a profound effect on inclusion-tip stress fields. A large radial compressive stress is generated in front of the inclusion-tip when the inclusion is well bonded, whereas a large tensile hoop stress is generated when the inclusion is unbended, and frictionless sliding is allowed. Consequently, an epoxy disk containing an unbended inclusion appears more likely to crack when cooled than a disk containing a fully bonded inclusion. A limited number of tests have been carried out to determine if encapsulant cracking can be induced by cooling a specimen fabricated by molding a square, steel insert within a thin, epoxy disk. Test results are in qualitative agreement with analysis. Cracks developed only in disks with mold-released inserts, and the tendency for cracking increased with inclusion size.
Abstract not provided.