Publications

Results 101–125 of 142
Skip to search filters

Improving distribution network PV hosting capacity via smart inverter reactive power support

IEEE Power and Energy Society General Meeting

Seuss, John; Reno, Matthew J.; Broderick, Robert J.; Grijalva, Santiago

Many utilities today have a large number of interconnection requests for new PV installations on their distribution networks. Interconnections should be approved in a timely manner but without compromising network reliability. It is thus important to know a network's PV hosting capacity, which defines the upper bound of PV sizes that pose no risk to the network. This paper investigates how implementing reactive power control on the PV inverter impacts the PV hosting capacity of a distribution network. A local Volt-Var droop control is used and simulations are performed in OpenDSS and Matlab. Multiple feeders are tested and it is found that the control greatly improves the overall hosting capacity of the feeder as well as the locational hosting capacity of most voltage constrained buses.

More Details

Alternatives to the 15% Rule: Modeling and Hosting Capacity Analysis of 16 Feeders

Smith, Jeff S.; Rylander, Matthew R.; Reno, Matthew J.; Broderick, Robert J.; Mather, Barry M.; Quiroz, Jimmy E.; Munoz-Ramos, Karina M.

This project is part of the third solicitation of the California Solar Initiative (CSI3) Research, Development, Demonstration, and Deployment Program created by the California Public Utilities Commission (CPUC) in 2006 to support solar research in California. The program focuses on research to improve the utility application review and approval process for interconnecting distributed energy resources such as solar to the distribution system. The CSI3 program is supporting EPRI, National Renewable Energy Laboratory (NREL), and Sandia National Laboratories (SNL) in their collaboration on the process with Pacific Gas and Electric (PG&E), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E). At present, the application review and approval process is the most time-consuming of any step on the path to generating power for delivery through the distribution system.

More Details

Distribution System Secondary Circuit Parameter Estimation for Model Calibration

Peppanen, Jouni P.; Reno, Matthew J.; Broderick, Robert J.; Grijalva, Santiago G.

To analyze and coordinate the operation of distribution systems with rapidly increasing amounts of PV, more accurate distribution system models are required, especially for the distribution system secondary (low-voltage) circuits down to the point of common coupling for distributed PV. There is a growing need for automated procedures to calibrate the distribution system secondary circuit models that are typically either not modeled at all or are modeled with a lower level of detail than the better modeled medium-voltage systems. This report presents an accurate, flexible, and computationally efficient method to use measurement data to estimate secondary circuit series impedance parameters in existing utility feeder models. The parameter estimation method assumes well-modeled primary circuit models, known secondary circuit topologies, and AMI active power, and reactive power measurements at all the loads in the secondary circuit. The method also requires AMI voltage measurement at most of the loads in the secondary circuit but can handle loads that do not have voltage measurements. No existing secondary circuit model information is needed, except for topology. The method is based on the well-known linearized voltage drop approximation and linear regression. The performance of the method is demonstrated on a three-phase test circuit with ten different secondary circuit topologies and on the Georgia Tech campus distribution system with AMI data. The developed method can be utilized to improve existing utility feeder models for more accurate analysis and operation with ubiquitous distributed PV interconnected on the low-voltage circuits.

More Details

Characterizing local high-frequency solar variability and its impact to distribution studies

Solar Energy

Lave, Matthew S.; Reno, Matthew J.; Broderick, Robert J.

Accurately representing the local solar variability at timescales relevant to distribution grid operations (30-s and shorter) is essential to modeling the impact of solar photovoltaics (PV) on distribution feeders. Due to a lack of available high-frequency solar data, some distribution grid studies have used synthetically-created PV variability or measured PV variability from a different location than their study location. In this work, we show the importance of using accurate solar PV variability inputs in distribution studies. Using high-frequency solar irradiance data from 10 locations in the United States, we compare the ramp rate distributions at the different locations, use a quantitative metric to describe the solar variability at each location, and run distribution simulations using representative 1-week samples from each location to demonstrate the impact of locational solar variability on the number of voltage regulator tap change operations. Results show more than a factor of 3 difference in the number of tap change operations between different PV power variability samples based on irradiance from the different locations. Errors in simulated number of tap changes of up to -70% were found when using low-frequency (e.g., 15-min) solar variability.

More Details

Analysis of 100 SGIP Interconnection Studies

Sena, Santiago S.; Quiroz, Jimmy E.; Broderick, Robert J.

The purpose of the report is to describe the findings from the analysis of 100 Small Generation Interconnection Procedure (SGIP) studies and describe the methodology used to develop the database. The database was used to identify the most likely impacts and mitigation costs associated with PV system interconnections. A total of 100 SGIP reports performed by 3 utilities and one regional transmission operator (RTO) were analyzed. Each record within the database represents an itemized SGIP report and includes information about the generation facility, interconnection topology, electrical power system characteristics, identified adverse system impacts, mitigation options, and costs associated with interconnection the generation facility. The analysis identified several key findings: * 44% of generation facilities that entered the SGIP study process had no adverse impact on the electrical power system. * Interconnection topologies were strongly correlated to the presence/absence of adverse system impacts. * Protection impacts were the most common adverse system impact. * 50% of SGIP studies identified total connection costs of less than $689,431. * 50% of SGIP studies identified total connection costs per MW of less than $133,833

More Details

Evaluation of reactive power control capabilities of residential PV in an unbalanced distribution feeder

2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014

Seuss, John; Reno, Matthew J.; Broderick, Robert J.; Harley, Ronald G.

The use of residential PV grid-tie inverters to supply reactive power as a benefit to the distribution grid has been widely proposed, however, there is little insight into how much of a benefit can be achieved from this control under varying system operating points. This paper seeks to demonstrate the effectiveness of a linearized versus nonlinear reactive power dispatch solution on a highly unbalanced distribution feeder under differing load profiles, insolation levels, and penetration rates of PV in the feeder. The results are analyzed to determine the system operating points that are favorable to reactive power control and the overall effectiveness of each solution in realistic feeder states.

More Details

High-resolution residential feeder load characterization and variability modelling

2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014

Pohl, Andrew; Johnson, Jay; Sena, Santiago; Broderick, Robert J.; Quiroz, Jimmy E.

Data from of a highly instrumented residential feeder in Ota City, Japan was used to determine 1 second load variability for the aggregation of 50, 100, 250, and 500 homes. The load variability is categorized by binning the data into seasons, weekdays vs. weekends, and time of day to create artificial sub-15-minute variability estimates for modeling dynamic load profiles. An autoregressive, AR(1) function along with a high pass filter was used to simulate the high resolution variability. The simulated data were validated against the original 1-second measured data.

More Details

Locational dependence of PV hosting capacity correlated with feeder load

Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference

Coogan, Kyle; Reno, Matthew J.; Grijalva, Santiago; Broderick, Robert J.

With rising adoption of solar energy, it is increasingly important for utilities to easily assess potential interconnections of photovoltaic (PV) systems. In this analysis, we show the maximum feeder voltage due to various PV interconnections and provide visualizations of the PV impact to the distribution system. We investigate the locational dependence of PV hosting capacity by examining the impact of PV system size on these voltages with regard to PV distance and resistance to the substation. We look at the effect of increasing system size on line loading and feeder violations. The magnitude of feeder load is also considered as an independent variable with repeated analyses to determine the effect on the PV impact analysis. A technique is presented to determine and visualize the maximum capacity for possible PV installations for distribution feeders.

More Details
Results 101–125 of 142
Results 101–125 of 142