Publications

Results 76–100 of 142
Skip to search filters

Analysis of PV Advanced Inverter Functions and Setpoints under Time Series Simulation

Seuss, John S.; Reno, Matthew J.; Broderick, Robert J.; Grijalva, Santiago G.

Utilities are increasingly concerned about the potential negative impacts distributed PV may have on the operational integrity of their distribution feeders. Some have proposed novel methods for controlling a PV system's grid - tie inverter to mitigate poten tial PV - induced problems. This report investigates the effectiveness of several of these PV advanced inverter controls on improving distribution feeder operational metrics. The controls are simulated on a large PV system interconnected at several locations within two realistic distribution feeder models. Due to the time - domain nature of the advanced inverter controls, quasi - static time series simulations are performed under one week of representative variable irradiance and load data for each feeder. A para metric study is performed on each control type to determine how well certain measurable network metrics improve as a function of the control parameters. This methodology is used to determine appropriate advanced inverter settings for each location on the f eeder and overall for any interconnection location on the feeder.

More Details

Accelerating cost-effective deployment of solar generation on the distribution grid

Broderick, Robert J.

The Task 1 objective is to “expedite the PV interconnection process by revising the screening process in California”. The goal of this task is to develop a data-driven, validated approach to determining feeder limits that can simplify interconnection processes and lead to greater PV adoption across the California distribution system.

More Details

Enhanced grid operation and optimized PV penetration utilizing highly distributed sensor data

Broderick, Robert J.

This task describes R&D activities to establish methods to cost-effectively achieve very high PV penetration scenarios (well beyond 100% of peak load at the feeder level) by leveraging distributed inverters to increase situational awareness and provide local voltage support. The grid performance and reliability objectives (SI vision) of this proposal were selected to enhance feeder planning models that can better characterize and quantify the electric power system including the secondary system servicing customers. The Communication objective was selected to demonstrate how visibility and control of behind-the-meter systems and distributed storage at large scale can be optimized to address system reliability and variability impacts, and to maximize the value of solar in high PV penetration scenarios. The goal of this project was to achieve enhanced grid operation and optimized PV penetration utilizing highly distributed sensor data via three subtasks 1.1-1.3.

More Details

Multi-Objective Advanced Inverter Controls to Dispatch the Real and Reactive Power of Many Distributed PV Systems

Seuss, John S.; Reno, Matthew J.; Lave, Matthew S.; Broderick, Robert J.; Grijalva, Santiago G.

The research presented in this report compares several real - time control strategies for the power output of a large number of PV distributed throughout a large distribution feeder circuit. Both real and reactive power controls are considered with the goal of minimizing network over - voltage violations caused by large amounts of PV generation. Several control strategies are considered under various assumptions regarding the existence and latency of a communication network. The control parameters are adjusted to maximize the effectiveness of each control. The controls are then compared based on their ability to achieve multiple objectiv es. These objectives include minimizing the total number of voltage violations , minimizing the total amount of PV energy curtailed or reactive power generated, and maximizing the fairness of any control action among all PV systems . The controls are simulat ed on the OpenDSS platform using time series load and spatially - distributed irradiance data.

More Details

Technical evaluation of the 15% of peak load PV interconnection screen

2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015

Reno, Matthew J.; Broderick, Robert J.

Most utilities use a standard small generator interconnection procedure (SGIP) process that includes a screen for placing potential PV interconnection requests on a fast track that do not require more detailed study. One common screening threshold is the 15% of peak load screen that fast tracks PV below a certain size. This paper performs a technical evaluation of the screen compared to a large number of simulation results for PV on 40 different feeders. Three error metrics are developed to quantify the accuracy of the screen for identifying interconnections that would cause problems or incorrectly sending a large number of allowable systems for more detailed study.

More Details

Tools for Enhanced Grid Operation and Optimized PV Penetration Utilizing Highly Distributed Sensor Data

Reno, Matthew J.; Peppanen, Jouni P.; Seuss, John S.; Lave, Matthew S.; Broderick, Robert J.; Grijalva, Santiago G.

Increasing number s of PV on distribution systems are creating more grid impacts , but it also provides more opportunities for measurement, sensing, and control of the grid in a distributed fashion. This report demonstrates three software tools for characterizing and controlling distribution feeders by utilizing large numbers of highly distributed current, voltage , and irradiance sensors. Instructions and a user manual is presented for each tool. First, the tool for distribution system secondary circuit parameter estimation is presented. This tool allows studying distribution system parameter estimation accuracy with user-selected active power, reactive power, and voltage measurements and measurement error levels. Second, the tool for multi-objective inverter control is shown. Various PV inverter control strategies can be selected to objectively compare their impact on the feeder. Third, the tool for energy storage for PV ramp rate smoothing is presented. The tool allows the user to select different storage characteristics (power and energy ratings) and control types (local vs. centralized) to study the tradeoffs between state-of-charge (SOC) management and the amount of ramp rate smoothing.

More Details

Alternatives to the 15% Rule

Broderick, Robert J.; Rylander, Matthew R.; Reno, Matthew J.; Munoz-Ramos, Karina M.; Quiroz, Jimmy E.; Smith, Jeff S.; Rogers, Lindsey R.; Dugan, Roger D.; Mather, Barry M.; Coddington, Michael C.; Gotseff, Peter G.; Ding, Fei D.

The third solicitation of the California Solar Initiative (CSI) Research, Development, Demonstration and Deployment (RD&D) Program established by the California Public Utility Commission (CPUC) is supporting the Electric Power Research Institute (EPRI), National Renewable Energy Laboratory (NREL), and Sandia National Laboratories (SNL) with collaboration from Pacific Gas and Electric (PG&E), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E), in research to improve the Utility Application Review and Approval process for interconnecting distributed energy resources to the distribution system. Currently this process is the most time - consuming of any step on the path to generating power on the distribution system. This CSI RD&D solicitation three project has completed the tasks of collecting data from the three utilities, clustering feeder characteristic data to attain representative feeders, detailed modeling of 16 representative feeders, analysis of PV impacts to those feeders, refinement of current screening processes, and validation of those suggested refinements. In this report each task is summarized to produce a final summary of all components of the overall project.

More Details
Results 76–100 of 142
Results 76–100 of 142