Publications

Results 51–75 of 142
Skip to search filters

Novel Methods to Determine Feeder Locational PV Hosting Capacity and PV Impact Signatures

Reno, Matthew J.; Coogan, Kyle C.; Seuss, John S.; Broderick, Robert J.

Often PV hosting capacity analysis is performed for a limited number of distribution feeders. For medium - voltage distribution feeders, previous results generally analyze less than 20 feeders, and then the results are extrapolated out to similar types of feeders. Previous hosting capacity research has often focused on determining a single value for the hosting capacity for the entire feeder, whereas this research expands previous hosting capacity work to investigate all the regions of the feeder that may allow many different hosting capacity values wit h an idea called locational hosting capacity (LHC)to determine the largest PV size that can be interconnected at different locations (buses) on the study feeders. This report discusses novel methods for analyzing PV interconnections with advanced simulati on methods. The focus is feeder and location - specific impacts of PV that determine the locational PV hosting capacity. Feeder PV impact signature are used to more precisely determine the local maximum hosting capacity of individual areas of the feeder. T he feeder signature provides improved interconnection screening with certain zones that show the risk of impact to the distribution feeder from PV interconnections.

More Details

Determining the Impact of Steady-State PV Fault Current Injections on Distribution Protection

Seuss, John S.; Reno, Matthew J.; Broderick, Robert J.; Grijalva, Santiago G.

This report investigates the fault current contribution from a single large PV system and the impact it has on existing distribution overcurrent protection devices. Assumptions are made about the modeling of the PV system under fault to perform exhaustive steady - state fault analyses throughout distribution feeder models. Each PV interconnection location is tested to determine how the size of the PV system affects the fault current measured by each protection device. This data is then searched for logical conditions that indicate whether a protection device has operated in a manner that will cause more customer outages due to the addition of the PV system. This is referred to as a protection issue , and there are four unique types of issues that have been identified in the study. The PV system size at which any issues occur are recorded to determine the feeder's PV hosting capacity limitations due to interference with protection settings. The analysis is carried out on six feeder models. The report concludes with a discussion of the prevalence and cause of each protection issue caused by PV system fault current.

More Details

Methods to determine recommended feeder-wide advanced inverter settings for improving distribution system performance

2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017

Rylander, Matthew; Reno, Matthew J.; Quiroz, Jimmy E.; Ding, Fei; Li, Huijuan; Broderick, Robert J.; Mather, Barry; Smith, Jeff

More Details

Secondary circuit model creation and validation with AMI and transformer measurements

NAPS 2016 - 48th North American Power Symposium, Proceedings

Peppanen, Jouni; Grijalva, Santiago; Reno, Matthew J.; Broderick, Robert J.

Accurate distribution secondary circuit models are needed to effectively monitor and coordinate the distributed energy resources located in the secondary circuits and to enhance overall distribution system operations and planning. Accurate secondary models are also needed to fully leverage the measurement data received from smart meters and distributed energy resources at the customer premises. This paper discusses approaches for creating distribution system secondary low-voltage circuit models utilizing smart meter measurements. This paper also discusses methods to model secondary circuits when the loads and distributed energy resources are only partially metered. The presented methods are demonstrated on a real distribution secondary circuit with smart meter measurements and transformer low voltage measurements. Practical challenges related to real measurement data are discussed.

More Details

Secondary circuit model generation using limited PV measurements and parameter estimation

IEEE Power and Energy Society General Meeting

Peppanen, Jouni; Grijalva, Santiago; Reno, Matthew J.; Broderick, Robert J.

This paper presents an approach for generating simplified secondary circuit models with limited SCADA and PV micro-inverter measurement data. The proposed method is computationally efficient and can be utilized with typically available measurement data. The method is applied to models of three real U.S. utility feeders with PV micro-inverter measurements. The proposed simplified secondary circuit modeling approach decreases the PV voltage simulation errors in all the three feeders compared to using generic secondary circuit models. This paper also presents approaches for improving the feeder voltage regulating device model set points by utilizing the PV voltage measurements.

More Details

Statistical analysis of feeder and locational PV hosting capacity for 216 feeders

IEEE Power and Energy Society General Meeting

Reno, Matthew J.; Broderick, Robert J.

As PV penetration on the distribution system increases, there is growing concern about how much PV each feeder can handle. A total of 216 medium-voltage distributions feeders have been analyzed in detail for their individual PV hosting capacity and the locational PV hosting capacity at all the buses on the feeder. A statistical analysis is performed on the hosting capacity results in order to compare correlation with feeder load, percent of issues caused, and the variation for different feeder voltages. Due to the large number of distribution systems simulated, the analysis provides novel insights into each of these areas. Investigating the locational PV hosting capacity also expands the conventional analytical methods that study only the worst-case PV scenario.

More Details

Characterizing Local High-frequency Solar Variability for use in Distribution Studies

Conference Record of the IEEE Photovoltaic Specialists Conference

Lave, Matthew S.; Broderick, Robert J.

Accurately representing the local solar variability at distribution timescales (30-seconds and shorter) is essential to modeling the impact of solar photovoltaics (PV) on distribution feeders. Previous works have examined variability at single locations, but this may not be useful to an operator whose distribution feeder is in a different climate region. In this work, we compare high-frequency variability from 8 locations in the United States. We define a variability metric for quantifying variability and use this metric to quantify and compare the variability at each of the 8 locations. We also explore the relationship between high-frequency and low-frequency (hourly) variability to see if widely-available low-frequency data (e.g., satellite data) may be used to determine variability climate zones. The end goal is to provide high-frequency solar inputs with climatologically representative solar variability for use in distribution studies.

More Details

Distribution System Model Calibration with Big Data from AMI and PV Inverters

IEEE Transactions on Smart Grid

Peppanen, Jouni; Reno, Matthew J.; Broderick, Robert J.; Grijalva, Santiago

Efficient management and coordination of distributed energy resources with advanced automation schemes requires accurate distribution system modeling and monitoring. Big data from smart meters and photovoltaic (PV) micro-inverters can be leveraged to calibrate existing utility models. This paper presents computationally efficient distribution system parameter estimation algorithms to improve the accuracy of existing utility feeder radial secondary circuit model parameters. The method is demonstrated using a real utility feeder model with advanced metering infrastructure (AMI) and PV micro-inverters, along with alternative parameter estimation approaches that can be used to improve secondary circuit models when limited measurement data is available. The parameter estimation accuracy is demonstrated for both a three-phase test circuit with typical secondary circuit topologies and single-phase secondary circuits in a real mixed-phase test system.

More Details

Analysis to Inform CA Grid Integration Rules for PV: Final Report on Inverter Settings for Transmission and Distribution System Performance

Smith, Jeff S.; Rylander, Matthew R.; Boemer, Jens B.; Broderick, Robert J.; Reno, Matthew J.; Mather, Barry M.

The fourth solicitation of the California Solar Initiative (CSI) Research, Development, Demonstration and Deployment (RD&D) Program established by the California Public Utilities Commission (CPUC) supported the Electric Power Research Institute (EPRI), National Renewable Energy Laboratory (NREL), and Sandia National Laboratories (SNL) with data provided from Pacific Gas and Electric (PG&E), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E) conducted research to determine optimal default settings for distributed energy resource advanced inverter controls. The inverter functions studied are aligned with those developed by the California Smart Inverter Working Group (SIWG) and those being considered by the IEEE 1547 Working Group. The advanced inverter controls examined to improve the distribution system response included power factor, volt-var, and volt-watt. The advanced inverter controls examined to improve the transmission system response included frequency and voltage ride-through as well as Dynamic Voltage Support. This CSI RD&D project accomplished the task of developing methods to derive distribution focused advanced inverter control settings, selecting a diverse set of feeders to evaluate the methods through detailed analysis, and evaluating the effectiveness of each method developed. Inverter settings focused on the transmission system performance were also evaluated and verified. Based on the findings of this work, the suggested advanced inverter settings and methods to determine settings can be used to improve the accommodation of distributed energy resources (PV specifically). The voltage impact from PV can be mitigated using power factor, volt-var, or volt-watt control, while the bulk system impact can be improved with frequency/voltage ride-through.

More Details

Distribution system low-voltage circuit topology estimation using smart metering data

Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference

Peppanen, Jouni; Grijalva, Santiago; Reno, Matthew J.; Broderick, Robert J.

Operating distribution systems with a growing number of distributed energy resources requires accurate feeder models down to the point of interconnection. Many of the new resources are located in the secondary low-voltage distribution circuits that typically are not modeled or modeled with low level of detail. This paper presents a practical and computational efficient approach for estimating the secondary circuit topologies from historical voltage and power measurement data provided by smart meters and distributed energy resource sensors. The accuracy of the algorithm is demonstrated on a 66-node test circuit utilizing real AMI data. The algorithm is also utilized to estimate the secondary circuit topologies of the Georgia Tech distribution system. Challenges and practical implementation approaches of the algorithm are discussed. The paper demonstrates the computational infeasibility of exhaustive secondary circuit topology estimation approaches and presents an efficient algorithm for verifying whether two radial secondary circuits have identical topologies.

More Details

Accuracy of clustering as a method to group distribution feeders by PV hosting capacity

Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference

Broderick, Robert J.; Munoz-Ramos, Karina M.; Reno, Matthew J.

This paper examines the accuracy of clustering techniques for predicting hosting capacity. Hosting capacity results for 214 study feeders were used to predict a range of hosting capacities for an addition 7929 feeders using clustering techniques. Several methods were explored to try to improve the accuracy for predicting hosting capacity, including increasing the number of clusters, selecting variables that are highly correlated to hosting capacity for clustering, and weighting highly correlated clustering variables. The average normalized interquartile range (ANIQR) is used to compare the accuracy of several clustering methods for predicting hosting capacity.

More Details
Results 51–75 of 142
Results 51–75 of 142