Dynamic SetPoint Control of Electric Hot Water Heaters for Increased Integration of Solar Photovoltaic Systems
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Often PV hosting capacity analysis is performed for a limited number of distribution feeders. For medium - voltage distribution feeders, previous results generally analyze less than 20 feeders, and then the results are extrapolated out to similar types of feeders. Previous hosting capacity research has often focused on determining a single value for the hosting capacity for the entire feeder, whereas this research expands previous hosting capacity work to investigate all the regions of the feeder that may allow many different hosting capacity values wit h an idea called locational hosting capacity (LHC)to determine the largest PV size that can be interconnected at different locations (buses) on the study feeders. This report discusses novel methods for analyzing PV interconnections with advanced simulati on methods. The focus is feeder and location - specific impacts of PV that determine the locational PV hosting capacity. Feeder PV impact signature are used to more precisely determine the local maximum hosting capacity of individual areas of the feeder. T he feeder signature provides improved interconnection screening with certain zones that show the risk of impact to the distribution feeder from PV interconnections.
This report investigates the fault current contribution from a single large PV system and the impact it has on existing distribution overcurrent protection devices. Assumptions are made about the modeling of the PV system under fault to perform exhaustive steady - state fault analyses throughout distribution feeder models. Each PV interconnection location is tested to determine how the size of the PV system affects the fault current measured by each protection device. This data is then searched for logical conditions that indicate whether a protection device has operated in a manner that will cause more customer outages due to the addition of the PV system. This is referred to as a protection issue , and there are four unique types of issues that have been identified in the study. The PV system size at which any issues occur are recorded to determine the feeder's PV hosting capacity limitations due to interference with protection settings. The analysis is carried out on six feeder models. The report concludes with a discussion of the prevalence and cause of each protection issue caused by PV system fault current.
Abstract not provided.
Abstract not provided.
2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017
This paper describes methods that a distribution engineer could use to determine advanced inverter settings to improve distribution system performance. These settings are for fixed power factor, volt-var, and volt-watt functionality. Depending on the level of detail that is desired, different methods are proposed to determine single settings applicable for all advanced inverters on a feeder or unique settings for each individual inverter. Seven distinctly different utility distribution feeders are analyzed to simulate the potential benefit in terms of hosting capacity, system losses, and reactive power attained with each method to determine the advanced inverter settings.
NAPS 2016 - 48th North American Power Symposium, Proceedings
Accurate distribution secondary circuit models are needed to effectively monitor and coordinate the distributed energy resources located in the secondary circuits and to enhance overall distribution system operations and planning. Accurate secondary models are also needed to fully leverage the measurement data received from smart meters and distributed energy resources at the customer premises. This paper discusses approaches for creating distribution system secondary low-voltage circuit models utilizing smart meter measurements. This paper also discusses methods to model secondary circuits when the loads and distributed energy resources are only partially metered. The presented methods are demonstrated on a real distribution secondary circuit with smart meter measurements and transformer low voltage measurements. Practical challenges related to real measurement data are discussed.
IEEE Power and Energy Society General Meeting
This paper presents an approach for generating simplified secondary circuit models with limited SCADA and PV micro-inverter measurement data. The proposed method is computationally efficient and can be utilized with typically available measurement data. The method is applied to models of three real U.S. utility feeders with PV micro-inverter measurements. The proposed simplified secondary circuit modeling approach decreases the PV voltage simulation errors in all the three feeders compared to using generic secondary circuit models. This paper also presents approaches for improving the feeder voltage regulating device model set points by utilizing the PV voltage measurements.
IEEE Power and Energy Society General Meeting
As PV penetration on the distribution system increases, there is growing concern about how much PV each feeder can handle. A total of 216 medium-voltage distributions feeders have been analyzed in detail for their individual PV hosting capacity and the locational PV hosting capacity at all the buses on the feeder. A statistical analysis is performed on the hosting capacity results in order to compare correlation with feeder load, percent of issues caused, and the variation for different feeder voltages. Due to the large number of distribution systems simulated, the analysis provides novel insights into each of these areas. Investigating the locational PV hosting capacity also expands the conventional analytical methods that study only the worst-case PV scenario.
Conference Record of the IEEE Photovoltaic Specialists Conference
Accurately representing the local solar variability at distribution timescales (30-seconds and shorter) is essential to modeling the impact of solar photovoltaics (PV) on distribution feeders. Previous works have examined variability at single locations, but this may not be useful to an operator whose distribution feeder is in a different climate region. In this work, we compare high-frequency variability from 8 locations in the United States. We define a variability metric for quantifying variability and use this metric to quantify and compare the variability at each of the 8 locations. We also explore the relationship between high-frequency and low-frequency (hourly) variability to see if widely-available low-frequency data (e.g., satellite data) may be used to determine variability climate zones. The end goal is to provide high-frequency solar inputs with climatologically representative solar variability for use in distribution studies.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Smart Grid
Efficient management and coordination of distributed energy resources with advanced automation schemes requires accurate distribution system modeling and monitoring. Big data from smart meters and photovoltaic (PV) micro-inverters can be leveraged to calibrate existing utility models. This paper presents computationally efficient distribution system parameter estimation algorithms to improve the accuracy of existing utility feeder radial secondary circuit model parameters. The method is demonstrated using a real utility feeder model with advanced metering infrastructure (AMI) and PV micro-inverters, along with alternative parameter estimation approaches that can be used to improve secondary circuit models when limited measurement data is available. The parameter estimation accuracy is demonstrated for both a three-phase test circuit with typical secondary circuit topologies and single-phase secondary circuits in a real mixed-phase test system.
The fourth solicitation of the California Solar Initiative (CSI) Research, Development, Demonstration and Deployment (RD&D) Program established by the California Public Utilities Commission (CPUC) supported the Electric Power Research Institute (EPRI), National Renewable Energy Laboratory (NREL), and Sandia National Laboratories (SNL) with data provided from Pacific Gas and Electric (PG&E), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E) conducted research to determine optimal default settings for distributed energy resource advanced inverter controls. The inverter functions studied are aligned with those developed by the California Smart Inverter Working Group (SIWG) and those being considered by the IEEE 1547 Working Group. The advanced inverter controls examined to improve the distribution system response included power factor, volt-var, and volt-watt. The advanced inverter controls examined to improve the transmission system response included frequency and voltage ride-through as well as Dynamic Voltage Support. This CSI RD&D project accomplished the task of developing methods to derive distribution focused advanced inverter control settings, selecting a diverse set of feeders to evaluate the methods through detailed analysis, and evaluating the effectiveness of each method developed. Inverter settings focused on the transmission system performance were also evaluated and verified. Based on the findings of this work, the suggested advanced inverter settings and methods to determine settings can be used to improve the accommodation of distributed energy resources (PV specifically). The voltage impact from PV can be mitigated using power factor, volt-var, or volt-watt control, while the bulk system impact can be improved with frequency/voltage ride-through.
Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference
Operating distribution systems with a growing number of distributed energy resources requires accurate feeder models down to the point of interconnection. Many of the new resources are located in the secondary low-voltage distribution circuits that typically are not modeled or modeled with low level of detail. This paper presents a practical and computational efficient approach for estimating the secondary circuit topologies from historical voltage and power measurement data provided by smart meters and distributed energy resource sensors. The accuracy of the algorithm is demonstrated on a 66-node test circuit utilizing real AMI data. The algorithm is also utilized to estimate the secondary circuit topologies of the Georgia Tech distribution system. Challenges and practical implementation approaches of the algorithm are discussed. The paper demonstrates the computational infeasibility of exhaustive secondary circuit topology estimation approaches and presents an efficient algorithm for verifying whether two radial secondary circuits have identical topologies.
Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference
This paper examines the accuracy of clustering techniques for predicting hosting capacity. Hosting capacity results for 214 study feeders were used to predict a range of hosting capacities for an addition 7929 feeders using clustering techniques. Several methods were explored to try to improve the accuracy for predicting hosting capacity, including increasing the number of clusters, selecting variables that are highly correlated to hosting capacity for clustering, and weighting highly correlated clustering variables. The average normalized interquartile range (ANIQR) is used to compare the accuracy of several clustering methods for predicting hosting capacity.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Utilities are increasingly concerned about the potential negative impacts distributed PV may have on the operational integrity of their distribution feeders. Some have proposed novel methods for controlling a PV system's grid - tie inverter to mitigate poten tial PV - induced problems. This report investigates the effectiveness of several of these PV advanced inverter controls on improving distribution feeder operational metrics. The controls are simulated on a large PV system interconnected at several locations within two realistic distribution feeder models. Due to the time - domain nature of the advanced inverter controls, quasi - static time series simulations are performed under one week of representative variable irradiance and load data for each feeder. A para metric study is performed on each control type to determine how well certain measurable network metrics improve as a function of the control parameters. This methodology is used to determine appropriate advanced inverter settings for each location on the f eeder and overall for any interconnection location on the feeder.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The Task 1 objective is to “expedite the PV interconnection process by revising the screening process in California”. The goal of this task is to develop a data-driven, validated approach to determining feeder limits that can simplify interconnection processes and lead to greater PV adoption across the California distribution system.
This task describes R&D activities to establish methods to cost-effectively achieve very high PV penetration scenarios (well beyond 100% of peak load at the feeder level) by leveraging distributed inverters to increase situational awareness and provide local voltage support. The grid performance and reliability objectives (SI vision) of this proposal were selected to enhance feeder planning models that can better characterize and quantify the electric power system including the secondary system servicing customers. The Communication objective was selected to demonstrate how visibility and control of behind-the-meter systems and distributed storage at large scale can be optimized to address system reliability and variability impacts, and to maximize the value of solar in high PV penetration scenarios. The goal of this project was to achieve enhanced grid operation and optimized PV penetration utilizing highly distributed sensor data via three subtasks 1.1-1.3.
The research presented in this report compares several real - time control strategies for the power output of a large number of PV distributed throughout a large distribution feeder circuit. Both real and reactive power controls are considered with the goal of minimizing network over - voltage violations caused by large amounts of PV generation. Several control strategies are considered under various assumptions regarding the existence and latency of a communication network. The control parameters are adjusted to maximize the effectiveness of each control. The controls are then compared based on their ability to achieve multiple objectiv es. These objectives include minimizing the total number of voltage violations , minimizing the total amount of PV energy curtailed or reactive power generated, and maximizing the fairness of any control action among all PV systems . The controls are simulat ed on the OpenDSS platform using time series load and spatially - distributed irradiance data.
2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015
Most utilities use a standard small generator interconnection procedure (SGIP) process that includes a screen for placing potential PV interconnection requests on a fast track that do not require more detailed study. One common screening threshold is the 15% of peak load screen that fast tracks PV below a certain size. This paper performs a technical evaluation of the screen compared to a large number of simulation results for PV on 40 different feeders. Three error metrics are developed to quantify the accuracy of the screen for identifying interconnections that would cause problems or incorrectly sending a large number of allowable systems for more detailed study.
Increasing number s of PV on distribution systems are creating more grid impacts , but it also provides more opportunities for measurement, sensing, and control of the grid in a distributed fashion. This report demonstrates three software tools for characterizing and controlling distribution feeders by utilizing large numbers of highly distributed current, voltage , and irradiance sensors. Instructions and a user manual is presented for each tool. First, the tool for distribution system secondary circuit parameter estimation is presented. This tool allows studying distribution system parameter estimation accuracy with user-selected active power, reactive power, and voltage measurements and measurement error levels. Second, the tool for multi-objective inverter control is shown. Various PV inverter control strategies can be selected to objectively compare their impact on the feeder. Third, the tool for energy storage for PV ramp rate smoothing is presented. The tool allows the user to select different storage characteristics (power and energy ratings) and control types (local vs. centralized) to study the tradeoffs between state-of-charge (SOC) management and the amount of ramp rate smoothing.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The third solicitation of the California Solar Initiative (CSI) Research, Development, Demonstration and Deployment (RD&D) Program established by the California Public Utility Commission (CPUC) is supporting the Electric Power Research Institute (EPRI), National Renewable Energy Laboratory (NREL), and Sandia National Laboratories (SNL) with collaboration from Pacific Gas and Electric (PG&E), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E), in research to improve the Utility Application Review and Approval process for interconnecting distributed energy resources to the distribution system. Currently this process is the most time - consuming of any step on the path to generating power on the distribution system. This CSI RD&D solicitation three project has completed the tasks of collecting data from the three utilities, clustering feeder characteristic data to attain representative feeders, detailed modeling of 16 representative feeders, analysis of PV impacts to those feeders, refinement of current screening processes, and validation of those suggested refinements. In this report each task is summarized to produce a final summary of all components of the overall project.