Publications

Results 1–25 of 28
Skip to search filters

Using High Performance Computing to Examine the Processes of Neurogenesis Underlying Pattern Separation/Completion of Episodic Information

Aimone, James B.; Betty, Rita B.

Using High Performance Computing to Examine the Processes of Neurogenesis Underlying Pattern Separation/Completion of Episodic Information - Sandia researchers developed novel methods and metrics for studying the computational function of neurogenesis, thus generating substantial impact to the neuroscience and neural computing communities. This work could benefit applications in machine learning and other analysis activities.

More Details

Enabling the First Ever Measurement of Coherent Neutrino Scattering Through Background Neutron Measurements

Reyna, David R.; Betty, Rita B.

Using High Performance Computing to Examine the Processes of Neurogenesis Underlying Pattern Separation/Completion of Episodic Information - Sandia researchers developed novel methods and metrics for studying the computational function of neurogenesis,thus generating substantial impact to the neuroscience and neural computing communities. This work could benefit applications in machine learning and other analysis activities. The purpose of this project was to computationally model the impact of neural population dynamics within the neurobiological memory system in order to examine how subareas in the brain enable pattern separation and completion of information in memory across time as associated experiences.

More Details

Enhanced Micellar Catalysis LDRD

Betty, Rita B.; Glen, Crystal C.; Alam, Todd M.; Taggart, Gretchen S.; Tucker, Mark D.; Rivera, Danielle R.; Kinnan, Mark K.

The primary goals of the Enhanced Micellar Catalysis project were to gain an understanding of the micellar environment of DF-200, or similar liquid CBW surfactant-based decontaminants, as well as characterize the aerosolized DF-200 droplet distribution and droplet chemistry under baseline ITW rotary atomization conditions. Micellar characterization of limited surfactant solutions was performed externally through the collection and measurement of Small Angle X-Ray Scattering (SAXS) images and Cryo-Transmission Electron Microscopy (cryo-TEM) images. Micellar characterization was performed externally at the University of Minnesotas Characterization Facility Center, and at the Argonne National Laboratory Advanced Photon Source facility. A micellar diffusion study was conducted internally at Sandia to measure diffusion constants of surfactants over a concentration range, to estimate the effective micelle diameter, to determine the impact of individual components to the micellar environment in solution, and the impact of combined components to surfactant phase behavior. Aerosolized DF-200 sprays were characterized for particle size and distribution and limited chemical composition. Evaporation rates of aerosolized DF-200 sprays were estimated under a set of baseline ITW nozzle test system parameters.

More Details

Biological restoration of major transportation facilities domestic demonstration and application project (DDAP): technology development at Sandia National Laboratories

Griffith, Richard O.; Brown, Gary S.; Betty, Rita B.; Tucker, Mark D.; Ramsey, James L.; Brockmann, John E.; Lucero, Daniel A.; Mckenna, Sean A.; Peyton, Chad E.; Einfeld, Wayne E.; Ho, Pauline H.

The Bio-Restoration of Major Transportation Facilities Domestic Demonstration and Application Program (DDAP) is a designed to accelerate the restoration of transportation nodes following an attack with a biological warfare agent. This report documents the technology development work done at SNL for this DDAP, which include development of the BROOM tool, an investigation of surface sample collection efficiency, and a flow cytometry study of chlorine dioxide effects on Bacillus anthracis spore viability.

More Details

Agricultural pathogen decontamination technology-reducing the threat of infectious agent spread

Betty, Rita B.; Bieker, Jill M.; Tucker, Mark D.

Outbreaks of infectious agricultural diseases, whether natural occurring or introduced intentionally, could have catastrophic impacts on the U.S. economy. Examples of such agricultural pathogens include foot and mouth disease (FMD), avian influenza (AI), citrus canker, wheat and soy rust, etc. Current approaches to mitigate the spread of agricultural pathogens include quarantine, development of vaccines for animal diseases, and development of pathogen resistant crop strains in the case of plant diseases. None of these approaches is rapid, and none address the potential persistence of the pathogen in the environment, which could lead to further spread of the agent and damage after quarantine is lifted. Pathogen spread in agricultural environments commonly occurs via transfer on agricultural equipment (transportation trailers, tractors, trucks, combines, etc.), having components made from a broad range of materials (galvanized and painted steel, rubber tires, glass and Plexiglas shields, etc), and under conditions of heavy organic load (mud, soil, feces, litter, etc). A key element of stemming the spread of an outbreak is to ensure complete inactivation of the pathogens in the agricultural environment and on the equipment used in those environments. Through the combination of enhanced agricultural pathogen decontamination chemistry and a validated inactivation verification methodology, important technologies for incorporation as components of a robust response capability will be enabled. Because of the potentially devastating economic impact that could result from the spread of infectious agricultural diseases, the proposed capability components will promote critical infrastructure protection and greater border and food supply security. We investigated and developed agricultural pathogen decontamination technologies to reduce the threat of infectious-agent spread, and thus enhance agricultural biosecurity. Specifically, enhanced detergency versions of the patented Sandia decontamination chemistry were developed and tested against a few surrogate pathogens under conditions of relatively heavy organic load. Tests were conducted on surfaces commonly found in agricultural environments. Wide spectrum decontamination efficacy, low corrosivity, and biodegradability issues were addressed in developing an enhanced detergency formulation. A method for rapid assessment of loss of pathogenic activity (inactivation) was also assessed. This enhanced technology will enable rapid assessment of contamination following an intentional event, and will also be extremely useful in routine assessment of agricultural environments. The primary effort during the second year was progress towards a demonstration of both decontamination and viral inactivation technologies of Foot and Mouth virus (FMDv) using the modified SNL chemistry developed through this project. Lab studies using a surrogate virus (bovine enterovirus) were conducted using DF200, modified DF200 chemistry, and decontaminants currently recommended for use in heavily loaded organic, agricultural environments (VirkonS, 10% bleach, sodium hydroxide and citric acid). Tests using actual FMD virus will be performed at the Department of Homeland Security's Plum Island facilities in the fall of 2005. Success and the insight gained from this project will lead to enhanced response capability, which will benefit agencies such as USDA, DHS, DOD, and the agricultural industry.

More Details
Results 1–25 of 28
Results 1–25 of 28