Publications

Results 26–32 of 32
Skip to search filters

Early warning analysis for social diffusion events

ISI 2010 - 2010 IEEE International Conference on Intelligence and Security Informatics: Public Safety and Security

Colbaugh, Richard C.; Glass, Kristin

There is considerable interest in developing predictive capabilities for social diffusion processes, for instance enabling early identification of contentious "triggering" incidents that are likely to grow into large, self-sustaining mobilization events. Recently we have shown, using theoretical analysis, that the dynamics of social diffusion may depend crucially upon the interactions of social network communities, that is, densely connected groupings of individuals which have only relatively few links to other groups. This paper presents an empirical investigation of two hypotheses which follow from this finding: 1.) the presence of even just a few inter-community links can make diffusion activity in one community a significant predictor of activity in otherwise disparate communities and 2.) very early dispersion of a diffusion process across network communities is a reliable early indicator that the diffusion will ultimately involve a substantial number of individuals. We explore these hypotheses with case studies involving emergence of the Swedish Social Democratic Party at the turn of the 20th century, the spread of SARS in 2002-2003, and blogging dynamics associated with potentially incendiary real world occurrences. These empirical studies demonstrate that network community-based diffusion metrics do indeed possess predictive power, and in fact can be significantly more predictive than standard measures. © 2010 IEEE.

More Details

Transnational Islamic activism and radicalization : patterns, trends, and prognosticators

Colbaugh, Richard C.; Engi, Dennis E.; Laviolette, Randall A.; Spomer, Judith E.

More Details

Analysis of complex networks using aggressive abstraction

Colbaugh, Richard C.

This paper presents a new methodology for analyzing complex networks in which the network of interest is first abstracted to a much simpler (but equivalent) representation, the required analysis is performed using the abstraction, and analytic conclusions are then mapped back to the original network and interpreted there. We begin by identifying a broad and important class of complex networks which admit abstractions that are simultaneously dramatically simplifying and property preserving we call these aggressive abstractions -- and which can therefore be analyzed using the proposed approach. We then introduce and develop two forms of aggressive abstraction: 1.) finite state abstraction, in which dynamical networks with uncountable state spaces are modeled using finite state systems, and 2.) onedimensional abstraction, whereby high dimensional network dynamics are captured in a meaningful way using a single scalar variable. In each case, the property preserving nature of the abstraction process is rigorously established and efficient algorithms are presented for computing the abstraction. The considerable potential of the proposed approach to complex networks analysis is illustrated through case studies involving vulnerability analysis of technological networks and predictive analysis for social processes.

More Details
Results 26–32 of 32
Results 26–32 of 32