Publications

Results 76–100 of 217
Skip to search filters

Molecular dynamics studies of defect formation during heteroepitaxial growth of InGaN alloys on (0001) GaN surfaces

Journal of Applied Physics

Gruber, Jacob G.; Zhou, X.W.; Jones, Reese E.; Lee, Stephen R.; Tucker, G.J.

We investigate the formation of extended defects during molecular-dynamics (MD) simulations of GaN and InGaN growth on (0001) and ( 11 2 ¯ 0 ) wurtzite-GaN surfaces. The simulated growths are conducted on an atypically large scale by sequentially injecting nearly a million individual vapor-phase atoms towards a fixed GaN surface; we apply time-and-position-dependent boundary constraints that vary the ensemble treatments of the vapor-phase, the near-surface solid-phase, and the bulk-like regions of the growing layer. The simulations employ newly optimized Stillinger-Weber In-Ga-N-system potentials, wherein multiple binary and ternary structures are included in the underlying density-functional-theory training sets, allowing improved treatment of In-Ga-related atomic interactions. To examine the effect of growth conditions, we study a matrix of >30 different MD-growth simulations for a range of InxGa1-xN-alloy compositions (0 ≤ x ≤ 0.4) and homologous growth temperatures [0.50 ≤ T/T*m(x) ≤ 0.90], where T*m(x) is the simulated melting point. Growths conducted on polar (0001) GaN substrates exhibit the formation of various extended defects including stacking faults/polymorphism, associated domain boundaries, surface roughness, dislocations, and voids. In contrast, selected growths conducted on semi-polar ( 11 2 ¯ 0 ) GaN, where the wurtzite-phase stacking sequence is revealed at the surface, exhibit the formation of far fewer stacking faults. We discuss variations in the defect formation with the MD growth conditions, and we compare the resulting simulated films to existing experimental observations in InGaN/GaN. While the palette of defects observed by MD closely resembles those observed in the past experiments, further work is needed to achieve truly predictive large-scale simulations of InGaN/GaN crystal growth using MD methodologies.

More Details

Surface Structure and Stability of Partially Hydroxylated Silica Surfaces

Langmuir

Rimsza, Jessica R.; Jones, Reese E.; Criscenti, Louise C.

Surface energies of silicates influence crack propagation during brittle fracture and decrease with surface relaxation caused by annealing and hydroxylation. Molecular-level simulations are particularly suited for the investigation of surface processes. In this work, classical MD simulations of silica surfaces are performed with two force fields (ClayFF and ReaxFF) to investigate the effect of force field reactivity on surface structure and energy as a function of surface hydroxylation. An unhydroxylated fracture surface energy of 5.1 J/m2 is calculated with the ClayFF force field, and 2.0 J/m2 is calculated for the ReaxFF force field. The ClayFF surface energies are consistent with the experimental results from double cantilever beam fracture tests (4.5 J/m2), whereas ReaxFF underestimated these surface energies. Surface relaxation via annealing and hydroxylation was performed by creating a low-energy equilibrium surface. Annealing condensed neighboring siloxane bonds increased the surface connectivity, and decreased the surface energies by 0.2 J/m2 for ClayFF and 0.8 J/m2 for ReaxFF. Posthydroxylation surface energies decreased further to 4.6 J/m2 with the ClayFF force field and to 0.2 J/m2 with the ReaxFF force field. Experimental equilibrium surface energies are ∼0.35 J/m2, consistent with the ReaxFF force field. Although neither force field was capable of replicating both the fracture and equilibrium surface energies reported from experiment, each was consistent with one of these conditions. Therefore, future computational investigations that rely on accurate surface energy values should consider the surface state of the system and select the appropriate force field.

More Details

Molecular dynamics simulations of substitutional diffusion

Computational Materials Science

Zhou, X.W.; Jones, Reese E.; Gruber, Jacob G.

In atomistic simulations, diffusion energy barriers are usually calculated for each atomic jump path using a nudged elastic band method. Practical materials often involve thousands of distinct atomic jump paths that are not known a priori. Hence, it is often preferred to determine an overall diffusion energy barrier and an overall pre-exponential factor from the Arrhenius equation constructed through molecular dynamics simulations of mean square displacement of the diffusion species at different temperatures. This approach has been well established for interstitial diffusion, but not for substitutional diffusion at the same confidence. Using In0.1Ga0.9N as an example, we have identified conditions where molecular dynamics simulations can be used to calculate highly converged Arrhenius plots for substitutional alloys. This may enable many complex diffusion problems to be easily and reliably studied in the future using molecular dynamics, provided that moderate computing resources are available.

More Details

Assessing electrolyte transport properties with molecular dynamics

Journal of the Electrochemical Society

Jones, Reese E.; Ward, D.K.; Gittleson, Forrest S.; Foster, M.E.

In this work we use estimates of ionic transport properties obtained from molecular dynamics to rank lithium electrolytes of different compositions. We develop linear response methods to obtain the Onsager diffusivity matrix for all chemical species, its Fickian counterpart, and the mobilities of the ionic species. We apply these methods to the well-studied propylene carbonate/ethylene carbonate solvent with dissolved LiBF4 and O2. The results show that, over a range of lithium concentrations and carbonate mixtures, trends in the transport coefficients can be identified and optimal electrolytes can be selected for experimental focus; however, refinement of these estimation techniques is necessary for a reliable ranking of a large set of electrolytes.

More Details

Oxygen solubility and transport in Li-air battery electrolytes: Establishing criteria and strategies for electrolyte design

Energy and Environmental Science

Gittleson, Forrest S.; Jones, Reese E.; Ward, Donald K.; Foster, Michael E.

Li-air or Li-oxygen batteries promise significantly higher energies than existing commercial battery technologies, yet their development has been hindered by a lack of suitable electrolytes. In this article, we evaluate the physical properties of varied electrolyte compositions to form generalized criteria for electrolyte design. We show that oxygen transport through non-aqueous electrolytes has a critical impact on the discharge rate and capacity of Li-air batteries. Through experiments and molecular dynamics simulations, we highlight that the choice of salt species and concentration have an outsized influence on oxygen solubility, while solvent choice is the major influence on oxygen diffusivity. The stability of superoxide reaction intermediates, key to the oxygen reduction mechanism, is also affected by variations in salt concentration and the choice of solvent. The importance of reactant transport is confirmed through Li-air cell discharge, which demonstrates good agreement between the observed and calculated mass transport-limited currents. These results showcase the impact of electrolyte composition on transport in metal-air batteries and provide guiding principles and simulation-based tools for future electrolyte design.

More Details

Metal-organic frameworks for thermoelectric energy-conversion applications

MRS Bulletin

Talin, A.A.; Jones, Reese E.; Hopkins, Patrick E.

Motivated by low cost, low toxicity, mechanical flexibility, and conformability over complex shapes, organic semiconductors are currently being actively investigated as thermoelectric (TE) materials to replace the costly, brittle, and non-eco-friendly inorganic TEs for near-ambient-temperature applications. Metal-organic frameworks (MOFs) share many of the attractive features of organic polymers, including solution processability and low thermal conductivity. A potential advantage of MOFs and MOFs with guest molecules (Guest@MOFs) is their synthetic and structural versatility, which allows both the electronic and geometric structure to be tuned through the choice of metal, ligand, and guest molecules. This could solve the long-standing challenge of finding stable, high-TE-performance n-type organic semiconductors, as well as promote high charge mobility via the long-range crystalline order inherent in these materials. In this article, we review recent advances in the synthesis of MOF and Guest@MOF TEs and discuss how the Seebeck coefficient, electrical conductivity, and thermal conductivity could be tuned to further optimize TE performance.

More Details
Results 76–100 of 217
Results 76–100 of 217