Publications

Results 1–50 of 217
Skip to search filters

Fracture mechanisms of sodium silicate glasses

International Journal of Applied Glass Science

Rimsza, Jessica R.; Jones, Reese E.

Reactive classical molecular dynamics simulations of sodium silicate glasses, xNa2O–(100 − x)SiO2 (x = 10–30), under quasi-static loading, were performed for the analysis of molecular scale fracture mechanisms. Mechanical properties of the sodium silicate glasses were consistent with experimentally reported values, and the amount of crack propagation varied with reported fracture toughness values. The most crack propagation occurred in NS20 systems (20-mol% Na2O) compared with the other simulated compositions. Dissipation via two mechanisms, the first through sodium migration as a lower activation energy process and the second through structural rearrangement as a higher activation energy process, was calculated and accounted for the energy that was not stored elastically or associated with the formation of new fracture surfaces. A correlation between crack propagation and energy dissipation was identified, with systems with higher crack propagation exhibiting less energy dissipation. Sodium silicate glass compositions with lower energy dissipation also exhibited the most sodium movement and structural rearrangement within 10 Å of the crack tip during loading. Therefore, high sodium mobility near the crack tip may enable energy dissipation without requiring formation of structural defects. Therefore, the varying mobilities of the network modifiers near crack tips influence the brittleness and the crack growth rate of modified amorphous oxide systems.

More Details

Stress Intensity Thresholds for Development of Reliable Brittle Materials

Rimsza, Jessica R.; Strong, Kevin T.; Buche, Michael R.; Jones, Reese E.; Nakakura, Craig Y.; Weyrauch, Noah M.; Brow, Richard K.; Duree, Jessica M.; Stephens, Kelly S.; Grutzik, Scott J.

Brittle material failure in high consequence systems can appear random and unpredictable at subcritical stresses. Gaps in our understanding of how structural flaws and environmental factors (humidity, temperature) impact fracture propagation need to be addressed to circumvent this issue. A combined experimental and computational approach composed of molecular dynamics (MD) simulations, numerical modeling, and atomic force microscopy (AFM) has been undertaken to identify mechanisms of slow crack growth in silicate glasses. AFM characterization of crack growth as slow as 10-13 m/s was observed, with some stepwise crack growth. MD simulations have identified the critical role of inelastic relaxation in crack propagation, including evolution of the structure during relaxation. A numerical model for the existence of a stress intensity threshold, a stress intensity below which a fracture will not propagate, was developed. This transferrable model for predicting slow crack growth is being incorporated into mission-based programs.

More Details

Comprehensive uncertainty quantification (UQ) for full engineering models by solving probability density function (PDF) equation

Kolla, Hemanth K.; De, Saibal D.; Jones, Reese E.; Hansen, Michael A.; Plews, Julia A.

This report details a new method for propagating parameter uncertainty (forward uncertainty quantification) in partial differential equations (PDE) based computational mechanics applications. The method provides full-field quantities of interest by solving for the joint probability density function (PDF) equations which are implied by the PDEs with uncertain parameters. Full-field uncertainty quantification enables the design of complex systems where quantities of interest, such as failure points, are not known apriori. The method, motivated by the well-known probability density function (PDF) propagation method of turbulence modeling, uses an ensemble of solutions to provide the joint PDF of desired quantities at every point in the domain. A small subset of the ensemble is computed exactly, and the remainder of the samples are computed with approximation of the driving (dynamics) term of the PDEs based on those exact solutions. Although the proposed method has commonalities with traditional interpolatory stochastic collocation methods applied directly to quantities of interest, it is distinct and exploits the parameter dependence and smoothness of the dynamics term of the governing PDEs. The efficacy of the method is demonstrated by applying it to two target problems: solid mechanics explicit dynamics with uncertain material model parameters, and reacting hypersonic fluid mechanics with uncertain chemical kinetic rate parameters. A minimally invasive implementation of the method for representative codes SPARC (reacting hypersonics) and NimbleSM (finite- element solid mechanics) and associated software details are described. For solid mechanics demonstration problems the method shows order of magnitudes improvement in accuracy over traditional stochastic collocation. For the reacting hypersonics problem, the method is implemented as a streamline integration and results show very good accuracy for the approximate sample solutions of re-entry flow past the Apollo capsule geometry at Mach 30.

More Details

Sensitivity of the strength and toughness of concrete to the properties of the interfacial transition zone

Construction and Building Materials

Torrence, C.E.; Trageser, Jeremy T.; Jones, Reese E.; Rimsza, Jessica R.

Civil infrastructure is made primarily of concrete structures or components and therefore understanding durability and fracture behavior of concrete is of utmost importance. Concrete contains an interfacial transition zone (ITZ), a porous region surrounding the aggregates, that is often considered to be the weakest region in the concrete. The ITZ is poorly characterized and property estimates for the ITZ differ considerably. In this simulation study, representative concrete mesostructures are produced by packing coarse aggregates with realistic geometries into a mortar matrix. A meshless numerical method, peridynamics, is utilized to simulate the mechanical response including fracture under uniaxial compression and tension. The sensitivity of the stiffness and fracture toughness of the samples to the ITZ properties is computed, showing strong relationships between the ITZ properties and the effective modulus and effective yield strength of the concrete. These results provides insight into the influence of the poorly characterized ITZ on the stiffness and strength of concrete. This work showcases the applicability of peridynamics to concrete systems, matching experimental strength and modulus values. Additionally, relationships between the ITZ's mechanical properties and the overall concrete strength and stiffness are presented to enable future design decisions.

More Details

A minimally invasive, efficient method for propagation of full-field uncertainty in solid dynamics

International Journal for Numerical Methods in Engineering

Jones, Reese E.; Redle, Michael T.; Kolla, Hemanth K.; Plews, Julia A.

We present a minimally invasive method for forward propagation of material property uncertainty to full-field quantities of interest in solid dynamics. Full-field uncertainty quantification enables the design of complex systems where quantities of interest, such as failure points, are not known a priori. The method, motivated by the well-known probability density function (PDF) propagation method of turbulence modeling, uses an ensemble of solutions to provide the joint PDF of desired quantities at every point in the domain. A small subset of the ensemble is computed exactly, and the remainder of the samples are computed with approximation of the evolution equations based on those exact solutions. Although the proposed method has commonalities with traditional interpolatory stochastic collocation methods applied directly to quantities of interest, it is distinct and exploits the parameter dependence and smoothness of the driving term of the evolution equations. The implementation is model independent, storage and communication efficient, and straightforward. We demonstrate its efficiency, accuracy, scaling with dimension of the parameter space, and convergence in distribution with two problems: a quasi-one-dimensional bar impact, and a two material notched plate impact. For the bar impact problem, we provide an analytical solution to PDF of the solution fields for method validation. With the notched plate problem, we also demonstrate good parallel efficiency and scaling of the method.

More Details

Integrated Multiphysics Modeling of Environmentally Assisted Brittle Fracture

Rimsza, Jessica R.; Jones, Reese E.; Trageser, Jeremy T.; Hogancamp, Joshua H.; Torrence, Christa E.; Mitts, Cody A.; Mitchell, Chven A.; Taha, Mahmoud R.; Raby, Patience R.; Regueiro, Richard R.; Jadaan, Dhafer J.

Brittle materials, such as cement, compose major portions of built infrastructure and are vulnerable to degradation and fracture from chemo-mechanical effects. Currently, methods of modeling infrastructure do not account for the presence of a reactive environment, such as water, on the acceleration of failure. Here, we have developed methodologies and models of concrete and cement fracture that account for varying material properties, such as strength, shrinkage, and fracture toughness due to degradation or hydration. The models have been incorporated into peridynamics, non-local continuum mechanics methodology, that can model intersecting and branching brittle fracture that occurs in multicomponent brittle materials, such as concrete. Through development of new peridynamic capabilities, decalcification of cement and differential shrinkage in clay-cement composites have been evaluated, along with exemplar problems in nuclear waste cannisters and wellbores. We have developed methods to simulate multiphase phenomena in cement and cement-composite materials for energy and infrastructure applications.

More Details

Effects of Strain Rate and Temperature on the Mechanical Properties of Simulated Silica Ionogels

Journal of Physical Chemistry B

Skelton, R.; Jones, Reese E.

Ionogels are hybrid materials formed by impregnating the pore space of a solid matrix with a conducting ionic liquid. By combining the properties of both component materials, ionogels can act as self-supporting electrolytes in Li batteries. In this study, molecular dynamics simulations are used to investigate the dependence of mechanical properties of silica ionogels on solid fraction, temperature, and pore width. Comparisons are made with corresponding aerogels. We find that the solid matrix fraction increases the moduli and strength of the ionogel. This varies nonlinearly with temperature and strain rate, according to the contribution of the viscous ionic liquid to resisting deformation. Owing to the temperature and strain sensitivity of the ionic liquid viscosity, the mechanical properties approach a linear mixing law at high temperature and low strain rates. The median pore width of the solid matrix plays a complex role, with its influence varying qualitatively with deformation mode. Narrower pores increase the relevant elastic modulus under shear and uniaxial compression but reduce the modulus obtained under uniaxial tension. Conversely, shear and tensile strength are increased by narrowing the pore width. All of these pore size effects become more pronounced as the silica fraction increases. Pore size effects, similar to the effects of temperature and strain rate, are linked to the ease of fluid redistribution within the pore space during deformation-induced changes in the geometry of the pores.

More Details

Simulation of hardened cement degradation and estimation of uncertainty in predicted failure times with peridynamics

Construction and Building Materials

Jones, Reese E.; Rimsza, Jessica R.; Trageser, Jeremy T.; Hogancamp, Joshua H.

Modeling the degradation of cement-based infrastructure due to aqueous environmental conditions continues to be a challenge. In order to develop a capability to predict concrete infrastructure failure due to chemical degradation, we created a chemomechanical model of the effects of long-term water exposure on cement paste. The model couples the mechanical static equilibrium balance with reactive–diffusive transport and incorporates fracture and failure via peridynamics (a meshless simulation method). The model includes fundamental aspects of degradation of ordinary Portland cement (OPC) paste, including the observed softening, reduced toughness, and shrinkage of the cement paste, and increased reactivity and transport with water induced degradation. This version of the model focuses on the first stage of cement paste decalcification, the dissolution of portlandite. Given unknowns in the cement paste degradation process and the cost of uncertainty quantification (UQ), we adopt a minimally complex model in two dimensions (2D) in order to perform sensitivity analysis and UQ. We calibrate the model to existing experimental data using simulations of common tests such as flexure, compression and diffusion. Then we calculate the global sensitivity and uncertainty of predicted failure times based on variation of eleven unique and fundamental material properties. We observed particularly strong sensitivities to the diffusion coefficient, the reaction rate, and the shrinkage with degradation. Also, the predicted time of first fracture is highly correlated with the time to total failure in compression, which implies fracture can indicate impending degradation induced failure; however, the distributions of the two events overlap so the lead time may be minimal. Extension of the model to include the multiple reactions that describe complete degradation, viscous relaxation, post-peak load mechanisms, and to three dimensions to explore the interactions of complex fracture patterns evoked by more realistic geometry is straightforward and ongoing.

More Details

HIERARCHICAL PARALLELISM FOR TRANSIENT SOLID MECHANICS SIMULATIONS

World Congress in Computational Mechanics and ECCOMAS Congress

Littlewood, David J.; Jones, Reese E.; Morales, Nicolas M.; Plews, Julia A.; Hetmaniuk, Ulrich; Lifflander, Jonathan J.

Software development for high-performance scientific computing continues to evolve in response to increased parallelism and the advent of on-node accelerators, in particular GPUs. While these hardware advancements have the potential to significantly reduce turnaround times, they also present implementation and design challenges for engineering codes. We investigate the use of two strategies to mitigate these challenges: the Kokkos library for performance portability across disparate architectures, and the DARMA/vt library for asynchronous many-task scheduling. We investigate the application of Kokkos within the NimbleSM finite element code and the LAMÉ constitutive model library. We explore the performance of DARMA/vt applied to NimbleSM contact mechanics algorithms. Software engineering strategies are discussed, followed by performance analyses of relevant solid mechanics simulations which demonstrate the promise of Kokkos and DARMA/vt for accelerated engineering simulators.

More Details

Modeling strength and failure variability due to porosity in additively manufactured metals

Computer Methods in Applied Mechanics and Engineering

Khalil, Mohammad K.; Teichert, Gregory H.; Alleman, Coleman A.; Heckman, Nathan H.; Jones, Reese E.; Garikipati, K.; Boyce, B.L.

To model and quantify the variability in plasticity and failure of additively manufactured metals due to imperfections in their microstructure, we have developed uncertainty quantification methodology based on pseudo marginal likelihood and embedded variability techniques. We account for both the porosity resolvable in computed tomography scans of the initial material and the sub-threshold distribution of voids through a physically motivated model. Calibration of the model indicates that the sub-threshold population of defects dominates the yield and failure response. The technique also allows us to quantify the distribution of material parameters connected to microstructural variability created by the manufacturing process, and, thereby, make assessments of material quality and process control.

More Details

Prediction of the evolution of the stress field of polycrystals undergoing elastic-plastic deformation with a hybrid neural network model

Machine Learning: Science and Technology

Frankel, Ari L.; Tachida, Kousuke K.; Jones, Reese E.

Crystal plasticity theory is often employed to predict the mesoscopic states of polycrystalline metals, and is well-known to be costly to simulate. Using a neural network with convolutional layers encoding correlations in time and space, we were able to predict the evolution of the dominant component of the stress field given only the initial microstructure and external loading. In comparison to our recent work, we were able to predict not only the spatial average of the stress response but the evolution of the field itself. We show that the stress fields and their rates are in good agreement with the two dimensional crystal plasticity data and have no visible artifacts. Furthermore the distribution of stress throughout the elastic to fully plastic transition match the truth provided by held out crystal plasticity data. Lastly we demonstrate the efficacy of the trained model in material characterization and optimization tasks.

More Details

Automated high-throughput tensile testing reveals stochastic process parameter sensitivity

Materials Science and Engineering: A

Heckman, Nathan H.; Ivanoff, Thomas I.; Roach, Ashley M.; Jared, Bradley H.; Tung, Daniel J.; Brown-Shaklee, Harlan J.; Huber, Todd H.; Saiz, David J.; Koepke, Joshua R.; Rodelas, Jeffrey R.; Madison, Jonathan D.; Salzbrenner, Bradley S.; Swiler, Laura P.; Jones, Reese E.; Boyce, Brad B.

The mechanical properties of additively manufactured metals tend to show high variability, due largely to the stochastic nature of defect formation during the printing process. This study seeks to understand how automated high throughput testing can be utilized to understand the variable nature of additively manufactured metals at different print conditions, and to allow for statistically meaningful analysis. This is demonstrated by analyzing how different processing parameters, including laser power, scan velocity, and scan pattern, influence the tensile behavior of additively manufactured stainless steel 316L utilizing a newly developed automated test methodology. Microstructural characterization through computed tomography and electron backscatter diffraction is used to understand some of the observed trends in mechanical behavior. Specifically, grain size and morphology are shown to depend on processing parameters and influence the observed mechanical behavior. In the current study, laser-powder bed fusion, also known as selective laser melting or direct metal laser sintering, is shown to produce 316L over a wide processing range without substantial detrimental effect on the tensile properties. Ultimate tensile strengths above 600 MPa, which are greater than that for typical wrought annealed 316L with similar grain sizes, and elongations to failure greater than 40% were observed. It is demonstrated that this process has little sensitivity to minor intentional or unintentional variations in laser velocity and power.

More Details

Hydrogen diffusion across interfaces in zirconium

Jones, Reese E.; Reyes, Royce R.; Zhou, Xiaowang Z.; Foster, Michael E.; Spataru, Dan C.; Spearot , Doug S.

In order to study the effects of Ni oxidation barriers on H diffusion in Zr, a Ni-Zr-H potential was developed based on an existing Ni-Zr potential. Using this and existing binary potentials H diffusion characteristics were calculated and some limited findings for the performance of Ni on Zr coatings are made.

More Details

Uncertainty Quantification of Microstructural Material Variability Effects

Jones, Reese E.; Boyce, Brad B.; Frankel, Ari L.; Heckman, Nathan H.; Khalil, Mohammad K.; Ostien, Jakob O.; Rizzi, Francesco N.; Tachida, Kousuke K.; Teichert, Gregory H.; Templeton, Jeremy A.

This project has developed models of variability of performance to enable robust design and certification. Material variability originating from microstructure has significant effects on component behavior and creates uncertainty in material response. The outcomes of this project are uncertainty quantification (UQ) enabled analysis of material variability effects on performance and methods to evaluate the consequences of microstructural variability on material response in general. Material variability originating from heterogeneous microstructural features, such as grain and pore morphologies, has significant effects on component behavior and creates uncertainty around performance. Current engineering material models typically do not incorporate microstructural variability explicitly, rather functional forms are chosen based on intuition and parameters are selected to reflect mean behavior. Conversely, mesoscale models that capture the microstructural physics, and inherent variability, are impractical to utilize at the engineering scale. Therefore, current efforts ignore physical characteristics of systems that may be the predominant factors for quantifying system reliability. To address this gap we have developed explicit connections between models of microstructural variability and component/system performance. Our focus on variability of mechanical response due to grain and pore distributions enabled us to fully probe these influences on performance and develop a methodology to propagate input variability to output performance. This project is at the forefront of data-science and material modeling. We adapted and innovated from progressive techniques in machine learning and uncertainty quantification to develop a new, physically-based methodology to address the core issues of the Engineering Materials Reliability (EMR) research challenge in modeling constitutive response of materials with significant inherent variability and length-scales.

More Details

Bayesian modeling of inconsistent plastic response due to material variability

Computer Methods in Applied Mechanics and Engineering

Rizzi, F.; Khalil, Mohammad K.; Jones, Reese E.; Templeton, Jeremy A.; Ostien, Jakob O.; Boyce, B.L.

The advent of fabrication techniques such as additive manufacturing has focused attention on the considerable variability of material response due to defects and other microstructural aspects. This variability motivates the development of an enhanced design methodology that incorporates inherent material variability to provide robust predictions of performance. In this work, we develop plasticity models capable of representing the distribution of mechanical responses observed in experiments using traditional plasticity models of the mean response and recently developed uncertainty quantification (UQ) techniques. To account for material response variability through variations in physical parameters, we adapt a recent Bayesian embedded modeling error calibration technique. We use Bayesian model selection to determine the most plausible of a variety of plasticity models and the optimal embedding of parameter variability. To expedite model selection, we develop an adaptive importance-sampling-based numerical integration scheme to compute the Bayesian model evidence. We demonstrate that the new framework provides predictive realizations that are superior to more traditional ones, and how these UQ techniques can be used in model selection and assessing the quality of calibrated physical parameters.

More Details

Insight into hydrogen production through molecular simulation of an electrode-ionomer electrolyte system

Journal of Chemical Physics

Jones, Reese E.; Tucker, W.C.; Mills, M.J.L.; Mukerjee, S.

In this work, we examine metal electrode-ionomer electrolyte systems at high voltage (negative surface charge) and at high pH to assess factors that influence hydrogen production efficiency. We simulate the hydrogen evolution electrode interface investigated experimentally in the work of Bates et al. [J. Phys. Chem. C 119, 5467 (2015)] using a combination of first principles calculations and classical molecular dynamics. With this detailed molecular information, we explore the hypotheses posed in the work of Bates et al. In particular, we examine the response of the system to increased bias voltage and oxide coverage in terms of the potential profile, changes in solvation and species concentrations away from the electrode, surface concentrations, and orientation of water at reactive surface sites. We discuss this response in the context of hydrogen production.

More Details

Mechanisms of silica fracture in aqueous electrolyte solutions

Frontiers in Materials

Rimsza, Jessica R.; Jones, Reese E.; Criscenti, Louise C.

Glassy silicates are substantially weaker when in contact with aqueous electrolyte solutions than in vacuum due to chemical interactions with preexisting cracks. To investigate this silicate weakening phenomenon, classical molecular dynamics (MD) simulations of silica fracture were performed using the bond-order based, reactive force field ReaxFF. Four different environmental conditions were investigated: vacuum, water, and two salt solutions (1M NaCl, 1M NaOH) that form relatively acidic and basic solutions, respectively. Any aqueous environment weakens the silica, with NaOH additions resulting in the largest decreases in the effective fracture toughness (eKIC) of silica or the loading rate at which the fracture begins to propagate. The basic solution leads to higher surface deprotonation, narrower radius of curvature of the crack tip, and greater weakening of the silica, compared with the more acidic environment. The results from the two different electrolyte solutions correspond to phenomena observed in experiments and provide a unique atomistic insight into how anions alter the chemical-mechanical fracture response of silica.

More Details

Atomic-scale interaction of a crack and an infiltrating fluid

Chemical Physics Letters: X

Jones, Reese E.; Tucker, W.C.; Rimsza, Jessica R.; Criscenti, Louise C.

In this work we investigate the Orowan hypothesis, that decreases in surface energy due to surface adsorbates lead directly to lowered fracture toughness, at an atomic/molecular level. We employ a Lennard-Jones system with a slit crack and an infiltrating fluid, nominally with gold-water properties, and explore steric effects by varying the soft radius of fluid particles and the influence of surface energy/hydrophobicity via the solid–fluid binding energy. Using previously developed methods, we employ the J-integral to quantify the sensitivity of fracture toughness to the influence of the fluid on the crack tip, and exploit dimensionless scaling to discover universal trends in behavior.

More Details

Correlating structure and transport behavior in Li+ and O2 containing pyrrolidinium ionic liquids

Physical Chemistry Chemical Physics

Gittleson, Forrest S.; Ward, Donald K.; Jones, Reese E.; Zarkesh, Ryan A.; Sheth, Tanvi; Foster, Michael E.

Ionic liquids are a unique class of materials with several potential applications in electrochemical energy storage. When used in electrolytes, these highly coordinating solvents can influence device performance through their high viscosities and strong solvation behaviors. In this work, we explore the effects of pyrrolidinium cation structure and Li+ concentration on transport processes in ionic liquid electrolytes. We present correlated experimental measurements and molecular simulations of Li+ mobility and O2 diffusivity, and connect these results to dynamic molecular structural information and device performance. In the context of Li-O2/Li-air battery chemistries, we find that Li+ mobility is largely influenced by Li+-anion coordination, but that both Li+ and O2 diffusion may be affected by variations of the pyrrolidinium cation and Li+ concentration.

More Details

Chemical Effects on Subcritical Fracture in Silica From Molecular Dynamics Simulations

Journal of Geophysical Research: Solid Earth

Rimsza, Jessica R.; Jones, Reese E.; Criscenti, Louise C.

Fracture toughness of silicates is reduced in aqueous environments due to water-silica interactions at the crack tip. To investigate this effect, classical molecular dynamics simulations using the bond-order-based reactive force field (ReaxFF) were used to simulate silica fracture. The chemical and mechanical aspects were separated by simulating fracture in (a) a vacuum with dynamic loading, (b) an aqueous environment with dynamic loading, and (c) an aqueous environment with static subcritical mechanical loading to track silica dissolution. The addition of water to silica fracture reduced the silica fracture toughness by ~25%, a trend consistent with experimentally reported results. Analysis of Si─O bonds in the process zone and calculations of dissipation energy associated with fracture indicated that water relaxes the entire process zone and not just the surface. Additionally, the crack tip sharpens during fracture in water and an increased number of microscopic propagation events occur. This results in earlier fracture in systems with increasing mechanical loading in aqueous conditions, despite the lack of significant silica dissolution. Therefore, the threshold for Si─O bond breakage has been lowered in the presence of water and the reduction in fracture toughness is due to structural and energetic changes in the silica, rather than specific dissolution events.

More Details
Results 1–50 of 217
Results 1–50 of 217