Publications

Results 126–150 of 162
Skip to search filters

Towards a predictive MHD simulation capability for designing hypervelocity magnetically-driven flyer plates and PWclass z-pinch x-ray sources on Z and ZR

Mehlhorn, Thomas A.; Yu, Edmund Y.; Vesey, Roger A.; Cuneo, M.E.; Jones, Brent M.; Knudson, Marcus D.; Sinars, Daniel S.; Robinson, Allen C.; Trucano, Timothy G.; Brunner, Thomas A.; Desjarlais, Michael P.; Garasi, Christopher J.; Haill, Thomas A.; Hanshaw, Heath L.; Lemke, Raymond W.; Oliver, Bryan V.; Peterson, Kyle J.

Abstract not provided.

Z-pinch requirements for achieving high yield fusion via a z-pinch driven, double ended hohlraum concept

2006 International Conference on Megagauss Magnetic Field Generation and Related Topics, including the International Workshop on High Energy Liners and High Energy Density Applications, MEGAGAUSS

Lemke, Raymond W.; Vesey, Roger A.; Cuneo, M.E.; Desjarlais, Michael P.; Mehlhorn, Thomas A.

Using two-dimensional (2D), radiation magnetohydrodynamics (RMHD) numerical simulations, we have designed a feasible z-pinch radiation source that ignites a high yield fuel capsule in a z-pinch driven, double ended hohlraum concept. The z-pinch is composed of nested beryllium (Be) shells and a coaxial, cylindrical foam converter. The z-pinch is designed to produce a shaped radiation pulse that compresses a capsule by a sequence of three shocks without significant entropy increase. We present results of simulations pertaining to the z-pinch design, and discuss conditions that must be achieved in the z-pinch to ensure production of the required radiation pulse. © 2008 IEEE.

More Details

Shockless magnetic acceleration of al flyer plates to ultra-high velocity using multi-megabar drive pressures

Lemke, Raymond W.; Knudson, Marcus D.; Davis, Jean-Paul D.; Bliss, David E.; Slutz, Stephen A.; Giunta, Anthony A.; Harjes, Henry C.

The intense magnetic field generated in the 20 MA Z-machine is used to accelerate metallic flyer plates to high velocity for the purpose of generating strong shocks in equation of state experiments. We present results pertaining to experiments in which a 0.085 cm thick Al flyer plate is magnetically accelerated across a vacuum gap into a quartz target. Peak magnetic drive pressures up to 4.9 Mbar were produced, which yielded a record 34 km/s flyer velocity without destroying it by shock formation or Joule heating. Two-dimensional MHD simulation was used to optimize the magnetic drive pressure on the flyer surface, shape the current pulse to accelerate the flyer without shock formation (i.e., quasi-isentropically), and predict the flyer velocity. Shock pressures up to 11.5 Mbar were produced in quartz. Accurate measurements of the shock velocity indicate that a fraction of the flyer is at solid density when it arrives at the target. Comparison of measurements and simulation results yields a consistent picture of the flyer state at impact with the quartz target.

More Details

Optimization of magnetically accelerated, ultra-high velocity aluminum flyer plates for use in plate impact, shock wave experiments

Proposed for publication in the Journal of Applied Physics.

Lemke, Raymond W.; Knudson, Marcus D.; Bliss, David E.; Harjes, Henry C.; Slutz, Stephen A.

The intense magnetic field produced by the 20 MA Z accelerator is used as an impulsive pressure source to accelerate metal flyer plates to high velocity for the purpose of performing plate impact, shock wave experiments. This capability has been significantly enhanced by the recently developed pulse shaping capability of Z, which enables tailoring the rise time to peak current for a specific material and drive pressure to avoid shock formation within the flyer plate during acceleration. Consequently, full advantage can be taken of the available current to achieve the maximum possible magnetic drive pressure. In this way, peak magnetic drive pressures up to 490 GPa have been produced, which shocklessly accelerated 850 {micro}m aluminum (6061-T6) flyer plates to peak velocities of 34 km/s. We discuss magnetohydrodynamic (MHD) simulations that are used to optimize the magnetic pressure for a given flyer load and to determine the shape of the current rise time that precludes shock formation within the flyer during acceleration to peak velocity. In addition, we present results pertaining to plate impact, shock wave experiments in which the aluminum flyer plates were magnetically accelerated across a vacuum gap and impacted z-cut, {alpha}-quartz targets. Accurate measurements of resulting quartz shock velocities are presented and analyzed through high-fidelity MHD simulations enhanced using optimization techniques. Results show that a fraction of the flyer remains at solid density at impact, that the fraction of material at solid density decreases with increasing magnetic pressure, and that the observed abrupt decrease in the quartz shock velocity is well correlated with the melt transition in the aluminum flyer.

More Details

Time- and space-resolved spectroscopy of dynamic hohlraum interiors

Proposed for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer.

Bailey, James E.; Chandler, Gordon A.; Rochau, G.A.; Slutz, Stephen A.; Lake, Patrick W.; Lemke, Raymond W.; Mehlhorn, Thomas A.

A dynamic hohlraum is created when an annular z-pinch plasma implodes onto a cylindrical 0.014 g/cc 6-mm-diameter CH{sub 2} foam. The impact launches a radiating shock that propagates toward the axis at {approx}350 {micro}m/ns. The radiation trapped by the tungsten z-pinch plasma forms a {approx}200 eV hohlraum that provides X-rays for indirect drive inertial confinement fusion capsule implosion experiments. We are developing the ability to diagnose the hohlraum interior using emission and absorption spectroscopy of Si atoms added as a tracer to the central portion of the foam. Time- and space-resolved Si spectra are recorded with an elliptical crystal spectrometer viewing the cylindrical hohlraum end-on. A rectangular aperture at the end of the hohlraum restricts the field of view so that the 1D spectrometer resolution corresponds approximately to the hohlraum radial direction. This enables distinguishing between spectra from the unshocked radiation-heated foam and from the shocked foam. Typical spectral lines observed include the Si Ly{alpha} with its He-like satellites and the He-like resonance sequence including He{alpha}, He{beta}, and He{gamma}, along with some of their associated Li-like satellites. Work is in progress to infer the hohlraum conditions using collisional-radiative modeling that accounts for the radiation environment and includes both opacity effects and detailed Stark broadening calculations. These 6-mm-scale radiation-heated plasmas might eventually also prove suitable for testing Stark broadening line profile calculations or for opacity measurements.

More Details
Results 126–150 of 162
Results 126–150 of 162