Sort by Date
Sort by Title
Standard Format
Show Abstracts
As Citations (APA)
Skip to search filters
Robinson, Allen C. ; Petney, Sharon P. ; Drake, Richard R. ; Weirs, Vincent G. ; Adams, Brian M. ; Vigil, Dena V. ; Carpenter, John H. ; Garasi, Christopher J. ; Wong, Michael K. ; Robbins, Joshua R. ; Siefert, Christopher S. ; Strack, Otto E. ; Wills, Ann E. ; Trucano, Timothy G. ; Bochev, Pavel B. ; Summers, Randall M. ; Stewart, James R. ; Ober, Curtis C. ; Rider, William J. ; Haill, Thomas A. ; Lemke, Raymond W. ; Cochrane, Kyle C. ; Desjarlais, Michael P. ; Love, Edward L. ; Voth, Thomas E. ; Mosso, Stewart J. ; Niederhaus, John H.
Riford, Lauren S. ; Lemke, Raymond W. ; Cochrane, Kyle C.
Dolan, Daniel H. ; Lemke, Raymond W. ; Harding, Eric H. ; McBride, Ryan D. ; Martin, Matthew ; Dalton, Devon D.
Ao, Tommy A. ; Geissel, Matthias G. ; Harding, Eric H. ; Bailey, James E. ; Desjarlais, Michael P. ; Hansen, Stephanie B. ; Lemke, Raymond W. ; Sinars, Daniel S. ; Rochau, G.A.
Root, Seth R. ; Lemke, Raymond W. ; Mattsson, Thomas M.
Brown, Justin L. ; Lemke, Raymond W. ; Knudson, Marcus D.
Root, Seth R. ; Shulenburger, Luke N. ; Lemke, Raymond W. ; Cochrane, Kyle C. ; Mattsson, Thomas M.
Cuneo, M.E. ; Davis, Jean-Paul D. ; Lemke, Raymond W. ; McBride, Ryan D. ; Stygar, William A.
Cuneo, M.E. ; Davis, Jean-Paul D. ; Lemke, Raymond W. ; McBride, Ryan D. ; Stygar, William A.
Root, Seth R. ; Magyar, Rudolph J. ; Lemke, Raymond W. ; Mattsson, Thomas M.
Lemke, Raymond W.
Mattsson, Thomas M. ; Desjarlais, Michael P. ; Dolan, Daniel H. ; Flicker, Dawn G. ; Knudson, Marcus D. ; Lemke, Raymond W. ; Root, Seth R. ; Seagle, Christopher T. ; Shulenburger, Luke N.
Science
Root, Seth R. ; Lemke, Raymond W. ; Mattsson, Thomas M.
Science
Root, Seth R. ; Lemke, Raymond W. ; Mattsson, Thomas M.
Lemke, Raymond W. ; Dolan, Daniel H. ; McBride, Ryan D. ; Martin, Matthew ; Davis, Jean-Paul D. ; Dalton, Devon D.
Lemke, Raymond W.
Ao, Tommy A. ; Smith, Ian C. ; Geissel, Matthias G. ; Harding, Eric H. ; Bailey, James E. ; Hansen, Stephanie B. ; Sefkow, Adam B. ; Desjarlais, Michael P. ; Lemke, Raymond W. ; Sinars, Daniel S. ; Rochau, G.A.
Sinars, Daniel S. ; Jobe, Marc R. ; Lamppa, Derek C. ; Lemke, Raymond W. ; Martin, Matthew ; Mckenney, John M. ; Nakhleh, Charles N. ; Owen, Albert C. ; Peterson, Kyle J. ; Herrmann, Mark H. ; Smith, Ian C. ; Vesey, Roger A. ; Slutz, Stephen A. ; Cuneo, M.E. ; McBride, Ryan D. ; Rovang, Dean C. ; Sefkow, Adam B. ; Jennings, Christopher A.
Ao, Tommy A. ; Bailey, James E. ; Hansen, Stephanie B. ; Desjarlais, Michael P. ; Geissel, Matthias G. ; Smith, Ian C. ; Sinars, Daniel S. ; Lemke, Raymond W.
Lemke, Raymond W.
Bailey, James E. ; Ao, Tommy A. ; Harding, Eric H. ; Hansen, Stephanie B. ; Desjarlais, Michael P. ; Lemke, Raymond W. ; Rochau, G.A. ; Reneker, Joseph R. ; Romero, Dustin H.
Sinars, Daniel S. ; Jobe, Marc R. ; Lamppa, Derek C. ; Martin, Matthew ; Nakhleh, Charles N. ; Owen, Albert C. ; Mckenney, John M. ; McBride, Ryan D. ; Rovang, Dean C. ; Sefkow, Adam B. ; Slutz, Stephen A. ; Lemke, Raymond W. ; Cuneo, M.E. ; Herrmann, Mark H. ; Jennings, Christopher A.
Lemke, Raymond W.
Ao, Tommy A. ; Harding, Eric H. ; Bailey, James E. ; Sinars, Daniel S. ; Hansen, Stephanie B. ; Desjarlais, Michael P. ; Lemke, Raymond W. ; Geissel, Matthias G. ; Smith, Ian C.
Physics of Plasmas
Martin, M.R.; Lemke, Raymond W. ; McBride, Ryan D. ; Davis, Jean-Paul D. ; Dolan, Daniel H. ; Knudson, Marcus D. ; Cochrane, K.R.; Sinars, Daniel S. ; Smith, Ian C. ; Savage, Mark E. ; Stygar, William A. ; Killebrew, K.; Flicker, Dawn G. ; Herrmann, Mark H.
Current pulse shaping techniques, originally developed for planar dynamic material experiments on the Z-machine [M. K. Matzen, Phys. Plasmas 12, 055503 (2005)], are adapted to the design of controlled cylindrical liner implosions. By driving these targets with a current pulse shape that prevents shock formation inside the liner, shock heating is avoided along with the corresponding decrease in electrical conductivity ahead of the magnetic diffusion wave penetrating the liner. This results in an imploding liner with a significant amount of its mass in the solid phase and at multi-megabar pressures. Pressures in the solid region of a shaped pulse driven beryllium liner fielded on the Z-machine are inferred to 5.5 Mbar, while simulations suggest implosion velocities greater than 50 kms-1. These solid liner experiments are diagnosed with multi-frame monochromatic x-ray backlighting which is used to infer the material density and pressure. This work has led to a new platform on the Z-machine that can be used to perform off-Hugoniot measurements at higher pressures than are accessible through magnetically driven planar geometries. © 2012 American Institute of Physics.
Proposed for publication in 5th Special Issue of the IEEE Transactions on Plasma Science Z-Pinch Plasmas.
Cuneo, M.E. ; Mazarakis, Michael G. ; Lamppa, Derek C. ; Kaye, Ronald J. ; Nakhleh, Charles N. ; Bailey, James E. ; Hansen, Stephanie B. ; McBride, Ryan D. ; Herrmann, Mark H. ; Lopez, A. ; Peterson, Kyle J. ; Ampleford, David A. ; Jones, Michael J. ; Savage, Mark E. ; Jennings, Christopher A. ; Martin, Matthew ; Slutz, Stephen A. ; Lemke, Raymond W. ; Christenson, Peggy J. ; Sweeney, Mary A. ; Jones, Brent M. ; Yu, Edmund Y. ; McPherson, Leroy A. ; Harding, Eric H. ; Knapp, Patrick K. ; Gomez, Matthew R. ; Awe, Thomas J. ; Stygar, William A. ; Leeper, Ramon J. ; Ruiz, Carlos L. ; Chandler, Gordon A. ; Mckenney, John M. ; Owen, Albert C. ; McKee, George R. ; Matzen, M.K. ; Leifeste, Gordon T. ; Atherton, B.W. ; Vesey, Roger A. ; Smith, Ian C. ; Geissel, Matthias G. ; Rambo, Patrick K. ; Sinars, Daniel S. ; Sefkow, Adam B. ; Rovang, Dean C. ; Rochau, G.A.
Physical Review Letters
McBride, Ryan D. ; Peterson, Kyle J. ; Sefkow, Adam B. ; Nakhleh, Charles N. ; Laspe, Amy R. ; Lopez, Mike R. ; Smith, Ian C. ; Atherton, B.W. ; Savage, Mark E. ; Stygar, William A. ; Slutz, Stephen A. ; Rogers, Thomas J. ; Jennings, Christopher A. ; Sinars, Daniel S. ; Cuneo, M.E. ; Herrmann, Mark H. ; Lemke, Raymond W. ; Martin, Matthew ; Vesey, Roger A.
McBride, Ryan D. ; Slutz, Stephen A. ; Sinars, Daniel S. ; Lemke, Raymond W. ; Martin, Matthew ; Jennings, Christopher A. ; Cuneo, M.E. ; Herrmann, Mark H.
Ao, Tommy A. ; Harding, Eric H. ; Bailey, James E. ; Sinars, Daniel S. ; Desjarlais, Michael P. ; Hansen, Stephanie B. ; Lemke, Raymond W. ; Smith, Ian C.
Digest of Technical Papers-IEEE International Pulsed Power Conference
Glover, Steven F. ; Davis, Jean-Paul D. ; Schneider, Larry X. ; Reed, Kim W. ; Pena, Gary P. ; Hall, Clint A. ; Hanshaw, Heath L. ; Hickman, Randy J. ; Hodge, K.C.; Lemke, Raymond W. ; Lehr, J.M. ; Lucero, D.J.; McDaniel, Dillon H. ; Puissant, J.G.; Rudys, Joseph M. ; Sceiford, Matthew S. ; Tullar, S.J.; Van De Valde, D.M.; White, F.E.; Warne, Larry K. ; Coats, Rebecca S. ; Johnson, William Arthur.
The success of dynamic materials properties research at Sandia National Laboratories has led to research into ultra-low impedance, compact pulsed power systems capable of multi-MA shaped current pulses with rise times ranging from 220-500 ns. The Genesis design consists of two hundred and forty 200 kV, 80 kA modules connected in parallel to a solid dielectric disk transmission line and is capable of producing 280 kbar of magnetic pressure (>500 kbar pressure in high Z materials) in a 1.75 nH, 20 mm wide stripline load. Stripline loads operating under these conditions expand during the experiment resulting in a time-varying load that can impact the performance and lifetime of the system. This paper provides analysis of time-varying stripline loads and the impact of these loads on system performance. Further, an approach to reduce dielectric stress levels through active damping is presented as a means to increase system reliability and lifetime. © 2011 IEEE.
Digest of Technical Papers-IEEE International Pulsed Power Conference
Glover, Steven F. ; White, F.E.; Foster, P.J.; Lucero, D.J.; Schneider, Larry X. ; Reed, Kim W. ; Pena, Gary P. ; Davis, Jean-Paul D. ; Hall, Clint A. ; Hickman, Randy J. ; Hodge, K.C.; Lemke, Raymond W. ; Lehr, J.M. ; McDaniel, Dillon H. ; Puissant, J.G.; Rudys, Joseph M. ; Sceiford, Matthew S. ; Tullar, S.J.; Van De Valde, D.M.
Genesis is a compact pulsed power platform designed by Sandia National Laboratories to generate precision shaped multi-MA current waves with a rise time of 200-500 ns. In this system, two hundred and forty, 200 kV, 80 kA modules are selectively triggered to produce 280 kbar of magnetic pressure (>500 kbar pressure in high Z materials) in a stripline load for dynamic materials properties research. This new capability incorporates the use of solid dielectrics to reduce system inductance and size, programmable current shaping, and gas switches that must perform over a large range of operating conditions. Research has continued on this technology base with a focus on demonstrating the integrated performance of key concepts into a Genesis-like prototype called Protogen. Protogen measures approximately 1.4 m by 1.4 m and is designed to hold twelve Genesis modules. A fixed inductance load will allow rep-rate operation for component reliability and system lifetime experiments at the extreme electric field operating conditions expected in Genesis. © 2011 IEEE.
McBride, Ryan D. ; Slutz, Stephen A. ; Sinars, Daniel S. ; Lemke, Raymond W. ; Martin, Matthew ; Jennings, Christopher A. ; Cuneo, M.E. ; Herrmann, Mark H.
Lemke, Raymond W. ; Flicker, Dawn G. ; Herrmann, Mark H. ; McBride, Ryan D. ; Knudson, Marcus D. ; Davis, Jean-Paul D. ; Dolan, Daniel H. ; Sinars, Daniel S. ; Smith, Ian C. ; Savage, Mark E. ; Stygar, William A.
Glover, Steven F. ; Lemke, Raymond W. ; Lehr, J.M. ; Lucero, Diego J. ; McDaniel, Dillon H. ; Rudys, Joseph M. ; Sceiford, Matthew S. ; Davis, Jean-Paul D. ; Warne, Larry K. ; Coats, Rebecca S. ; Johnson, William Arthur. ; Schneider, Larry X. ; Pena, Gary P. ; Hall, Clint A. ; Hanshaw, Heath L. ; Hickman, Randy J.
Glover, Steven F. ; McDaniel, Dillon H. ; Rudys, Joseph M. ; Sceiford, Matthew S. ; Lemke, Raymond W. ; Schneider, Larry X. ; Pena, Gary P. ; Davis, Jean-Paul D. ; Hall, Clint A. ; Hickman, Randy J. ; Lehr, J.M. ; Lucero, Diego J.
Davis, Jean-Paul D. ; Lane, James M. ; Thompson, Aidan P. ; Drake, Richard R. ; Weirs, Vincent G. ; Flicker, Dawn G. ; Robbins, Joshua R. ; Lemke, Raymond W. ; Martin, Matthew ; Alexander, Charles S. ; Haill, Thomas A. ; Ao, Tommy A. ; Dolan, Daniel H.
Lemke, Raymond W. ; McBride, Ryan D. ; Davis, Jean-Paul D. ; Knudson, Marcus D.
Hanshaw, Heath L. ; Knudson, Marcus D. ; Martin, Matthew ; Desjarlais, Michael P. ; Lemke, Raymond W.
McBride, Ryan D. ; Flicker, Dawn G. ; Herrmann, Mark H. ; Lemke, Raymond W. ; Martin, Matthew ; Davis, Jean-Paul D. ; Knudson, Marcus D. ; Sinars, Daniel S. ; Slutz, Stephen A. ; Jennings, Christopher A. ; Cuneo, M.E.
Lemke, Raymond W. ; Martin, Matthew ; McBride, Ryan D. ; Davis, Jean-Paul D. ; Knudson, Marcus D.
Ao, Tommy A. ; Wenger, D.F. ; Bailey, James E. ; Desjarlais, Michael P. ; Hansen, Stephanie B. ; Knudson, Marcus D. ; Lemke, Raymond W. ; Mix, L.P. ; Sinars, Daniel S. ; Smith, Ian C.
Geissel, Matthias G. ; Lemke, Raymond W. ; Oliver, Bryan V. ; Webb, Timothy J. ; Flicker, Dawn G.
Ao, Tommy A. ; Wenger, D.F. ; Bailey, James E. ; Desjarlais, Michael P. ; Hansen, Stephanie B. ; Knudson, Marcus D. ; Lemke, Raymond W. ; Mix, L.P. ; Sinars, Daniel S. ; Smith, Ian C.
Davis, Jean-Paul D. ; Hanshaw, Heath L. ; Jennings, Christopher A. ; Lemke, Raymond W. ; Savage, Mark E. ; Stoltzfus, Brian S. ; Stygar, William A. ; Struve, Kenneth W.
McBride, Ryan D. ; Herrmann, Mark H. ; Slutz, Stephen A. ; Sinars, Daniel S. ; Lemke, Raymond W. ; Martin, Matthew ; Jennings, Christopher A. ; Davis, Jean-Paul D. ; Cuneo, M.E. ; Flicker, Dawn G.
McBride, Ryan D. ; Slutz, Stephen A. ; Jennings, Christopher A. ; Sinars, Daniel S. ; Lemke, Raymond W. ; Martin, Matthew ; Vesey, Roger A. ; Cuneo, M.E. ; Herrmann, Mark H.
Magnetic Liner Inertial Fusion (MagLIF) [S. A. Slutz, et al., Phys. Plasmas 17 056303 (2010)] is a promising new concept for achieving >100 kJ of fusion yield on Z. The greatest threat to this concept is the Magneto-Rayleigh-Taylor (MRT) instability. Thus an experimental campaign has been initiated to study MRT growth in fast-imploding (<100 ns) cylindrical liners. The first sets of experiments studied aluminum liner implosions with prescribed sinusoidal perturbations (see talk by D. Sinars). By contrast, this poster presents results from the latest sets of experiments that used unperturbed beryllium (Be) liners. The purpose for using Be is that we are able to radiograph 'through' the liner using the 6-keV photons produced by the Z-Beamlet backlighting system. This has enabled us to obtain time-resolved measurements of the imploding liner's density as a function of both axial and radial location throughout the field of view. This data is allowing us to evaluate the integrity of the inside (fuel-confining) surface of the imploding liner as it approaches stagnation.
Lemke, Raymond W. ; McBride, Ryan D. ; Knudson, Marcus D. ; Davis, Jean-Paul D.
Lemke, Raymond W.
Savage, Mark E. ; Leeper, Ramon J. ; Leifeste, Gordon T. ; Lemke, Raymond W. ; Long, Finis W. ; Lopez, Mike R. ; Matzen, M.K. ; McKee, George R. ; Stoltzfus, Brian S. ; Struve, Kenneth W. ; Atherton, B.W. ; Stygar, William A. ; Thomas, Rayburn D. ; Woodworth, Joseph R. ; Bliss, David E. ; Cuneo, M.E. ; Davis, Jean-Paul D. ; Hall, Clint A. ; Herrmann, Mark H. ; Jones, Michael J. ; Knudson, Marcus D.
Struve, Kenneth W. ; Lemke, Raymond W. ; Savage, Mark E.
In addressing the issue of the determining the hazard categorization of the Z Accelerator of doing Special Nuclear Material (SNM) experiments the question arose as to whether the machine could be fired with its central vacuum chamber open, thus providing a path for airborne release of SNM materials. In this report we summarize calculations that show that we could only expect a maximum current of 460 kA into such a load in a long-pulse mode, which will be used for the SNM experiments, and 750 kA in a short-pulse mode, which is not useful for these experiments. We also investigated the effect of the current for both cases and found that for neither case is the current high enough to either melt or vaporize these loads, with a melt threshold of 1.6 MA. Therefore, a necessary condition to melt, vaporize, or otherwise disperse SNM material is that a vacuum must exist in the Z vacuum chamber. Thus the vacuum chamber serves as a passive feature that prevents any airborne release during the shot, regardless of whatever containment may be in place.
Results 51–100 of 162
25 Results per page
50 Results per page
100 Results per page
200 Results per page