Obtaining off-Hugoniot equation of state data on solid metals at extreme pressures via pulsed power driven cylindrical liner implosions
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review Special Topics - Accelerators and Beams
Presented are voltage measurements taken near the load region on the Z pulsed-power accelerator using an inductive voltage monitor (IVM). Specifically, the IVM was connected to, and thus monitored the voltage at, the bottom level of the accelerator's vacuum double post-hole convolute. Additional voltage and current measurements were taken at the accelerator's vacuum-insulator stack (at a radius of 1.6 m) by using standard D-dot and B-dot probes, respectively. During postprocessing, the measurements taken at the stack were translated to the location of the IVM measurements by using a lossless propagation model of the Z accelerator's magnetically insulated transmission lines (MITLs) and a lumped inductor model of the vacuum post-hole convolute. Across a wide variety of experiments conducted on the Z accelerator, the voltage histories obtained from the IVM and the lossless propagation technique agree well in overall shape and magnitude. However, large-amplitude, high-frequency oscillations are more pronounced in the IVM records. It is unclear whether these larger oscillations represent true voltage oscillations at the convolute or if they are due to noise pickup and/or transit-time effects and other resonant modes in the IVM. Results using a transit-time-correction technique and Fourier analysis support the latter. Regardless of which interpretation is correct, both true voltage oscillations and the excitement of resonant modes could be the result of transient electrical breakdowns in the post-hole convolute, though more information is required to determine definitively if such breakdowns occurred. Despite the larger oscillations in the IVM records, the general agreement found between the lossless propagation results and the results of the IVM shows that large voltages are transmitted efficiently through the MITLs on Z. These results are complementary to previous studies [R.D. McBride et al., Phys. Rev. ST Accel. Beams 13, 120401 (2010)] that showed efficient transmission of large currents through the MITLs on Z. Taken together, the two studies demonstrate the overall efficient delivery of very large electrical powers through the MITLs on Z.
Journal of Applied Physics
Magnetically-driven, planar shockless-compression experiments to multi-megabar pressures were performed on tantalum samples using a stripline target geometry. Free-surface velocity waveforms were measured in 15 cases; nine of these in a dual-sample configuration with two samples of different thicknesses on opposing electrodes, and six in a single-sample configuration with a bare electrode opposite the sample. Details are given on the application of inverse Lagrangian analysis (ILA) to these data, including potential sources of error. The most significant source of systematic error, particularly for single-sample experiments, was found to arise from the pulse-shape dependent free-surface reflected wave interactions with the deviatoric-stress response of tantalum. This could cause local, possibly temporary, unloading of material from a ramp compressed state, and thus multi-value response in wave speed that invalidates the free-surface to in-material velocity mapping step of ILA. By averaging all 15 data sets, a final result for the principal quasi-isentrope of tantalum in stress-strain was obtained to a peak longitudinal stress of 330GPa with conservative uncertainty bounds of ±4.5% in stress. The result agrees well with a tabular equation of state developed at Los Alamos National Laboratory.
S hock compression exper iments in the few hundred GPa (multi - Mabr) regime were performed on Lithium Deuteride (LiD) single crystals . This study utilized the high velocity flyer plate capability of the Sandia Z Machine to perform impact experiments at flyer plate velocities in the range of 17 - 32 km/s. Measurements included pressure, density, and temperature between %7E200 - 600 GPa along the Principal Hugoniot - the locus of end states achievable through compression by large amplitude shock waves - as well as pressure and density of re - shock states up to %7E900 GPa . The experimental measurements are compared with recent density functional theory calculations as well as a new tabular equation of state developed at Los Alamos National Labs.
Abstract not provided.
Abstract not provided.
Nature
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Physics: Conference Series
In this article we discuss scaling the magnetically accelerated flyer plate technique to currents greater than is available on the Z accelerator. Peak flyer plate speeds in the range 7-46 km/s are achieved in pulsed power driven, hyper-velocity impact experiments on Z for peak currents in the range 8-20 MA. The highest (lowest) speeds are produced using aluminum (aluminum-copper) flyer plates. In either case, the ≈1 mm thick flyer plate is shocklessly accelerated by magnetic pressure to ballistic speed in ≈400 ns; it arrives at the target with a fraction of material at standard density. During acceleration a melt front, due to resistive heating, moves from the drive-side toward the target-side of the flyer plate; the speed of the melt front increases with increasing current. Peak flyer speeds on Z scale quadratically (linearly) with current at the low (high) end of the range. Magnetohydrodynamic simulation shows that the change in scaling is due to geometric deformation, and that linear scaling continues as current increases. However, the combined effects of shockless acceleration and resistive heating lead to an upper bound on the magnetic field feasible for pulsed power driven flyer plate experiments, which limits the maximum possible speed of a useful flyer plate to < 100 km/s. © Published under licence by IOP Publishing Ltd.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings of the APS-SCCM&AIRAPT-24 Joint Conference 2013
Abstract not provided.